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Stochastic Block Mode|

2:{1,2,..,n} = {1,2, ...k}

Az’j ~ Bernoulli(@ij)

ij = Qa(i)=(5)

Goal: recover 0;;



Biclustering (Hartigan, 1972)
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Goal: recover 6;;



Nonparametric Regression

yi = J() + €

x; €D, EZ'NN(O,l)

Common assumption: f is smooth on D.

Goal: recover f from both x and y



A More Challenging Problem

yi = J() + €

x; €D, EZ'NN(O,l)

Common assumption: f is smooth on D.

Goal: recover f from only y
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Prompted by the increasing interest in networks in many fields,
we present an attempt at unifying points of view and analyses of
these objects coming from the social sciences, statistics, probability
and physics communities. We apply our approach to the Newman-
Girvan modaularity, widely used for “community” detection, among
others. Our analysis is asymptotic but we show by simulation and
application to real examples that the theory is a reasonable guide
to practice.

modularity | profile likelihood | ergodic model | spectral clustering

he social sciences have investigated the structure of small

networks since the 1970s, and have come up with elaborate
modeling strategies, both deterministic, see Doreian et al. (1) for
a view, and stochastic, see Airoldi et al. (2) for a view and recent
work. During the same period, starting with the work of Erdos
and Rényi (3), a rich literature has developed on the probabilistic
properties of stochastic models for graphs. A major contribution
to this work is Bollobas et al. (4). On the whole, the goals of the
analyses of ref. 4, such as emergence of the giant component, are
not aimed at the statistical goals of the social science literature we
have cited.

principle, “fail-safe” for rich enough models. Moreover, our point
of view has the virtue of enabling us to think in terms of “strength
of relations” between individuals not necessarily clustering them
into communities beforehand.

We begin, using results of Aldous and Hoover (9), by introduc-
ing what we view as the analogues of arbitrary infinite population
models on infinite unlabeled graphs which are “ergodic” and from
which a subgraph with n vertices can be viewed as a piece. This
development of Aldous and Hoover can be viewed as a gener-
alization of deFinetti’s famous characterization of exchangeable
sequences as mixtures of i.i.d. ones. Thus, our approach can also be
viewed as a first step in the generalization of the classical construc-
tion of complex statistical models out of i.i.d. ones using covariates,
information about labels and relationships.

It turns out that natural classes of parametric models which
approximate the nonparametric models we introduce are the
“blockmodels” introduced by Holland, Laskey and Leinhardt
ref. 10; see also refs. 2 and 11, which are generalizations of the
Erdés-Rényi model. These can be described as follows.

In a possibly (at least conceptually) infinite population (of ver-
tices) there are K unknown subcommunities. Unlabeled individ-
uals (vertices) relate to each other through edges which for this
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1D Problem

2D Problem

Minimax Rate for Stochastic Block Model
Minimax Rate for Graphon Estimation

Adaptive Bayes Estimation



1D Problem

yz:f(xz)+€zy Ly = 9 i:1727“7n

[/
n

F = {f . f(z) = q1 for x € (0,1/2], f(x) = g9 for x € (1/2,1]}

inf sup I£ (711 Z(f(%) - f(ﬂii))z) = %

ffer



1D Problem

yz:f(xz)+€zp Ly = 9 7;:1,2,..,TL

)
n
Without observing x, the problem is equivalent to

Yi = 6’@ + €. © = {60 : half 0, is ¢q;, half 6; is g2}

1 <,
II}f sup I ( Z(@Z — (92)2> = 1.
n

0 0cO



2D Problem

Yij — f(flagj) - SYE f”& — Ev v, ] — 1727 ey T

F collects f such that



2D Problem

inf sup (nlz > (f&.¢) f(fz'éj))Q) = iz

T
;oJer 1<i,j<n

How about without knowing the design?

inf sup E (; > (f(&,fj)f(fi,fj))Q) x%.

;oJer 1<i,j<n



2D Problem

Let 0;; = f(&,&;). Does 0;; have any structure?
e~

{01,052, ...,0;,} are from the same row for each 1.

{015,024, ...,0n,} are from the same column for each j.



2D Problem

Yij = f(fz]) -+ €5, fij - [O, 1]2, Z,] — 1,2, )

Without knowing the design?

inf sup £ (nlg > (fl&) - f(fij))Q) = 1.

;Jer 1<i,j<n



Stochastic Block Mode|

A;; ~ Bernoulli(6;;)




Stochastic Block Mode|

Aij ~ Bernoulli(@ij)

O, = {(9 ; (97;3' — Qz(z)z(]), with z : [n] — [k]}

Theorem 1.1. Under the stochastic block model, we have

1 . k> logk
inf sup E < — 0i; —0ij)* ¢ < — + 7
0 0cO, {nQ Zgn]( J J) } ??,2 n

for any 1 < k < n.



Stochastic Block Mode|

Let k < n°, for § € [0, 1].




Graphon Estimation

Theorem (Aldous-Hoover). A random array {A;;} is jointly exchangeable in the sense that
{Aij}i{Aa(i)a(j)} for all permutation o,

if and only if it can be represented as follows: there is a random function F : |0, 1]3 — R

such that
d

where {&} and {&;} are i.i.d. Unif|0, 1].



Graphon Estimation

When the graph is undirected and has no self-loop,

Aij‘f@', fj ~ Bernoulli(@ij), Hij — f(f@, fj)

¢ ~ Unif(0,1) i.i.d.

Goal: recover f.




Graphon Estimation
Aij|&i, €5 ~ Bernoulli(0;;), 0y = f(&,&5)-

(517 cee gn) ™ Pf
Assumption: f € Fo(M).

Theorem 1.2. Consider the Holder class Fo (M),

. 1 ~ 9 ’n/_Oﬂ—‘Flj O<OZ<1,
inf sup supIE{n2 Z (055 — 0i5) }A {]Qg’n,,

0 fEFu(M)E~P: i ieln) a> 1.

The expectation is jointly over {A;;} and {&}.



Graphon Estimation

Proot:

, 1 k*  logk
min | |
E| k2 n? n




| ower Bound Proof

1
When 1 < £ < O(1), the minimax rate is —.
n

Sufficient to prove for k£ = 2.



| ower Bound Proof

Proposition (Fano). Let (0O, p) be a metric space and{Py : 8 € O} a collection of probability
measures. For any T C O, denote by M(e, T, p) the e-packing number of T w.r.t. p. Define
the KL diameter of T' by

dg1,(T) = sup D(Bl|Py).
0.0'cT

Then

R €2 dKL (T) + log 2
inf sup Egp* (9 X ,9) > sup — (1 — >
i 0co ) e>0 4 log M(€, T, p)



| ower Bound Proof

e Construct a subset
 Upper bound the KL-diameter

* Lower bound the packing number



| ower Bound Proof

for (i,7) € (S x S°)U (8¢ x S), with some S € S ;.

1

< {(9@]} c [O, 1]n><n : Hz'j — 5 for (Z,]) c (S X S) U (SC X SC),

1 1_|_ C
2 2 \/n
1 C 1
> " U 5
S S¢

\

/



| ower Bound Proof

1 2c” I —Ig/| (n — |Ig — Isr|)

n2 tJ n n n
1<z,5<n
1 1 C
S _ . -
> 2 " n
1 e 1
C _ -




| ower Bound Proof

Construct a subset:
T C O

Upper bound the KL diameter

sup D(Py||Pg) < sup 8]0 — 0'|]* < 8c*n.
0.6'cT 0.6'cT

Lower bound the packing number



| ower Bound Proof

Lower bound the packing number

ple Sl, ,SN C § s.t. in < ‘HS _HS" < Zn,

26 Is —Ig| (n = [Is ~TIs') _ & _
n n n ~8n

/02 @ (9/) —

M(e,T,p) > N > exp(cin)



| ower Bound Proof

1 . c? 8c’n + log 2 1
inf sup E | — 0;; — 0:5)° — (1 >
ey (n2 Z ) ) 32n< c1m ) T n

0 0€0; 1<i.j<n

IV



Upper Bounad

Oracle solution

When the clustering 2z is known, an obvious estimator

. 1 . —1 « »~1
A, = T > A, for (i, ) € 2 a) (b)

(4,5)€z=1(a)xz—1(b)

achieves the rate

16— 0112 < Op (k).



Upper Bounad

An equivalent form (least squares)

Fixing the known z, then solve

min |4 0]

s.t. 0i5 = Qi)z(j) for some @) = Q' €0, 1]F**

A natural estimator

Solve
min  ||A — 0|7
S.t. Qij = Qz(i)z(j) for some () = QT S [O, 1]ka
and some 2 :{1,2,....,n} —{1,2,.... k}.

10 — 0]|% < Op (K* +nlogk)



Bayes Estimation

: Sample k ~ . (k) o< exp (—D(/{:2 + nlogk))
. Sample z € {2z : |n| — |k|}. uniform
. Sample Q) ~ f. ?

- Let 055 = Q.(5)2(5)-



Bayes Estimation

. Sample k ~ 7.

. Sample z € {2z : |n| — |k|}.
1

Sample @~ f. 7@, (

- Let 055 = Q.(5)2(5)-

uniform

['(k2/2)

['(k?)

m(k) oc exp (—D(k* + nlogk))

6_>\k||Q||



Bayes Estimation

(k%)

. Dample k ~ . 7(k) x
. Sample z € {2z : |n| — |k|}.
Sample @~ f. 7@, (

- Let 055 = Q.(5)2(5)-

T(k2/2)

uniform

['(k2/2)

['(k?)

exp (—D(k* + nlogk))

6_>\k||Q||



Bayes Estimation

: Sample k ~ . (k) o< exp (—D(k2 + nlogk))

. Sample z € {2z : |n| — |k|}. uniform

2

. Sample Q) ~ f. f(Q) = % (A—\/’i> ]l

. Let 0;; = Qz(z’)z(j)



Bayes Estimation

Theorem 1.3. Consider A\, = 5% for some constant 8 > 0. Then

n2

2 1
(nQZH —0%) >M(k + Og’“) A) < exp (—C' (K> + nlogk)),

for some constants M,C" > 0.



Reference

Gao, Chao, Yu Lu, and Harrison H. Zhou. "Rate-optimal
Graphon Estimation." arXiv preprint arXiv:1410.5837 (2014).



Thank you



