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• 1D Problem 

• 2D Problem 

• Minimax Rate for Stochastic Block Model 

• Minimax Rate for Graphon Estimation 

• Adaptive Bayes Estimation
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:
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F collects f such that

How about without knowing the design?

Let ✓ij = f(⇠i, ⇠j). Does ✓ij have any structure?

{✓i1, ✓i2, ..., ✓in} are from the same row for each i.

{✓1j , ✓2j , ..., ✓nj} are from the same column for each j.

Without knowing the design?

⇥k =
n

✓ : ✓ij = Qz(i)z(j), with z : [n] ! [k]
o

assumed to live in the parameter space ⇥k, where k is the number of cluster in the stochastic

block model. The value of {✓ij} only depends on the clusters of the i-th and the j-th nodes.

The exact definition of ⇥k is given in Section 2.2. The minimax rate for estimating the

success matrix is the following theorem.

Theorem 1.1. Under the stochastic block model, we have

inf
ˆ✓

sup
✓2⇥k

E

8

<

:

1

n2

X

i,j2[n]
(✓̂ij � ✓ij)

2

9

=

;

⇣ k2

n2

+
log k

n
,

for any 1  k  n.

The convergence rate has two terms. The nonparametric rate (k/n)2 is due to the fact

that the number of observations is at the order of n2 and the number of parameters is at

the order of k2. The other term n�1 log k, which we coin as the clustering rate, is the error

induced by the lack of identifiability of the order of nodes in exchangeable random graph

models. Namely, it is resulted from the unknown clustering structure of the n nodes. This

terms grows logarithmically as the number of cluster k increases, di↵erent from what is

obtained in the literature [13].

Next, we study the minimax rate of estimating {✓ij} modeled by the relation (1) with f

belonging to a Hölder class F↵(M). The class F↵(M) is rigorously defined in Section 2.3.

The result is stated in the following theorem.

Theorem 1.2. Consider the Hölder class F↵(M), defined in Section 2.3. We have

inf
ˆ✓

sup
f2F↵(M)

sup
⇠⇠P⇠

E

8

<

:

1

n2

X

i,j2[n]
(✓̂ij � ✓ij)

2

9

=

;

⇣
(

n� 2↵
↵+1 , 0 < ↵ < 1,

logn
n , ↵ � 1.

The expectation is jointly over {Aij} and {⇠i}.
In fact, the approximation of stochastic block model to an ↵-smooth graphon f yields an

error at the order of k�2↵ (see Lemma 2.1). In view of the minimax rate in Theorem 1.1,

picking the best k to trade o↵ the sum of the three terms k�2↵, (k/n)2, and n�1 log k gives

the minimax rate in Theorem 1.2.

The minimax rate reveals a new phenomenon in nonparametric graphon estimation.

When the smoothness parameter ↵ is smaller than 1, the rate is the typical nonparamet-

ric one. Note that the typical nonparametric rate is N� 2↵
2↵+d [50], where N is the number of

observation and d is the model dimension. Here, we are in a two-dimensional setting with

number of observation N ⇣ n2 and dimension d = 2, so that
�

n2

�� 2↵
2↵+2 = n� 2↵

↵+1 . Surpris-

ingly, in the regime ↵ 2 (0, 1), we get the exact same nonparametric minimax rate, though

we are not given the knowledge of the design {(⇠i, ⇠j)}. The cost of not observing the design

is reflected in the case with ↵ � 1. In this regime, the smoothness of the function does not

help improving the rate anymore. The minimax rate is dominated by n�1 log n, which is

essentially contributed by the logarithmic cardinality of the set of all possible partitions. A

3
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F collects f such that

How about without knowing the design?

Let ✓ij = f(⇠i, ⇠j). Does ✓ij have any structure?

{✓i1, ✓i2, ..., ✓in} are from the same row for each i.

{✓1j , ✓2j , ..., ✓nj} are from the same column for each j.

Without knowing the design?

⇥k =
n

✓ : ✓ij = Qz(i)z(j), with z : [n] ! [k]
o

Let k ⇣ n

�, for � 2 [0, 1].
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:
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q3 (x, y) 2 [1/2, 1]⇥ [0, 1/2)

q4 (x, y) 2 [1/2, 1]⇥ [1/2, 1]

F collects f such that

k2

n2
+

log k

n
⇣

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

n�2 � = 0, k = 1,

n�1 � = 0, k > 1,

n�1 log n � 2 (0, 1/2],

n�2(1��) � 2 (1/2, 1].

(1)

How about without knowing the design?

Let ✓ij = f(⇠i, ⇠j). Does ✓ij have any structure?

{✓i1, ✓i2, ..., ✓in} are from the same row for each i.

{✓1j , ✓2j , ..., ✓nj} are from the same column for each j.

Without knowing the design?

⇥k =
n

✓ : ✓ij = Qz(i)z(j), with z : [n] ! [k]
o

Let k ⇣ n�, for � 2 [0, 1].

When the graph is undirected and has no self-loop,

Aij |⇠i, ⇠j ⇠ Bernoulli(✓ij), ✓ij = f(⇠i, ⇠j).

⇠i ⇠ Unif(0, 1) i.i.d.

Assumption: f 2 F↵(M).

Goal: recover f .

(⇠1, ..., ⇠n) ⇠ P⇠

Proof:

min
k

⇢

1

k2↵
+

k2

n2
+

log k

n

�

Proof. fds

When 1 < k  O(1),
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s.t.

When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1

2

1

2
+

cp
n

Su�cient to prove for k = 2.

T ⇢ ⇥k

⇢2(✓, ✓0) =
2c2

n

|IS � IS0 |
n

(n� |IS � IS0 |)
n

� c2

8n
=: ✏2.

⇢2(✓, ✓0) =
1

n2

X

1i,jn

(✓ij � ✓0ij)
2 =

2c2

n

|IS � IS0 |
n

(n� |IS � IS0 |)
n

.

Theorem (Aldous-Hoover). A random array {Aij} is jointly exchangeable in the sense that

{Aij}
d
={A�(i)�(j)} for all permutation �,

if and only if it can be represented as follows: there is a random function F : [0, 1]3 ! R

such that

Aij
d
=F (⇠i, ⇠j , ⇠ij),

where {⇠i} and {⇠ij} are i.i.d. Unif[0, 1].

Proposition (Fano). Let (⇥, ⇢) be a metric space and {P✓ : ✓ 2 ⇥} a collection of probability

measures. For any T ⇢ ⇥, denote by M(✏, T, ⇢) the ✏-packing number of T w.r.t. ⇢. Define

the KL diameter of T by

dKL(T ) = sup
✓,✓02T

D(P✓||P✓0).

Then

inf
✓̂
sup
✓2⇥

E✓⇢
2
⇣

✓̂(X), ✓
⌘

� sup
✏>0

✏2

4

✓

1�
dKL(T ) + log 2

logM(✏, T, ⇢)

◆

1. Sample k ⇠ ⇡.

2. Sample z 2 {z : [n] ! [k]}.

3. Sample Q ⇠ f .

4. Let ✓ij = Qz(i)z(j).
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How about without knowing the design?

Let ✓ij = f(⇠i, ⇠j). Does ✓ij have any structure?

{✓i1, ✓i2, ..., ✓in} are from the same row for each i.

{✓1j , ✓2j , ..., ✓nj} are from the same column for each j.

Without knowing the design?

⇥k =
n

✓ : ✓ij = Qz(i)z(j), with z : [n] ! [k]
o

Let k ⇣ n

�, for � 2 [0, 1].

When the graph is undirected and has no self-loop,

Aij |⇠i, ⇠j ⇠ Bernoulli(✓ij), ✓ij = f(⇠i, ⇠j).

⇠i ⇠ Unif(0, 1) i.i.d.

Chao Gao, Department of Statistics, Yale University c� October 12, 2014 2

f(x, y) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

q1 (x, y) 2 [0, 1/2)⇥ [0, 1/2)

q2 (x, y) 2 [0, 1/2)⇥ [1/2, 1]

q3 (x, y) 2 [1/2, 1]⇥ [0, 1/2)

q4 (x, y) 2 [1/2, 1]⇥ [1/2, 1]

F collects f such that

How about without knowing the design?

Let ✓ij = f(⇠i, ⇠j). Does ✓ij have any structure?

{✓i1, ✓i2, ..., ✓in} are from the same row for each i.

{✓1j , ✓2j , ..., ✓nj} are from the same column for each j.

Without knowing the design?

⇥k =
n

✓ : ✓ij = Qz(i)z(j), with z : [n] ! [k]
o

Let k ⇣ n

�, for � 2 [0, 1].

When the graph is undirected and has no self-loop,

Aij |⇠i, ⇠j ⇠ Bernoulli(✓ij), ✓ij = f(⇠i, ⇠j).

⇠i ⇠ Unif(0, 1) i.i.d.

Chao Gao, Department of Statistics, Yale University c� October 12, 2014 2

f(x, y) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

q1 (x, y) 2 [0, 1/2)⇥ [0, 1/2)

q2 (x, y) 2 [0, 1/2)⇥ [1/2, 1]

q3 (x, y) 2 [1/2, 1]⇥ [0, 1/2)

q4 (x, y) 2 [1/2, 1]⇥ [1/2, 1]

F collects f such that

How about without knowing the design?

Let ✓ij = f(⇠i, ⇠j). Does ✓ij have any structure?

{✓i1, ✓i2, ..., ✓in} are from the same row for each i.

{✓1j , ✓2j , ..., ✓nj} are from the same column for each j.

Without knowing the design?

⇥k =
n

✓ : ✓ij = Qz(i)z(j), with z : [n] ! [k]
o

Let k ⇣ n

�, for � 2 [0, 1].

When the graph is undirected and has no self-loop,

Aij |⇠i, ⇠j ⇠ Bernoulli(✓ij), ✓ij = f(⇠i, ⇠j).

⇠i ⇠ Unif(0, 1) i.i.d.

                       
                            

Chao Gao, Department of Statistics, Yale University c� October 12, 2014 2

f(x, y) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

q1 (x, y) 2 [0, 1/2)⇥ [0, 1/2)

q2 (x, y) 2 [0, 1/2)⇥ [1/2, 1]

q3 (x, y) 2 [1/2, 1]⇥ [0, 1/2)

q4 (x, y) 2 [1/2, 1]⇥ [1/2, 1]

F collects f such that

How about without knowing the design?

Let ✓ij = f(⇠i, ⇠j). Does ✓ij have any structure?

{✓i1, ✓i2, ..., ✓in} are from the same row for each i.

{✓1j , ✓2j , ..., ✓nj} are from the same column for each j.

Without knowing the design?

⇥k =
n

✓ : ✓ij = Qz(i)z(j), with z : [n] ! [k]
o

Let k ⇣ n

�, for � 2 [0, 1].

When the graph is undirected and has no self-loop,

Aij |⇠i, ⇠j ⇠ Bernoulli(✓ij), ✓ij = f(⇠i, ⇠j).

⇠i ⇠ Unif(0, 1) i.i.d.

Assumption: f 2 H↵(M)

Goal: recover f .



Graphon Estimation

Chao Gao, Department of Statistics, Yale University c� October 12, 2014 2

f(x, y) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

q1 (x, y) 2 [0, 1/2)⇥ [0, 1/2)

q2 (x, y) 2 [0, 1/2)⇥ [1/2, 1]

q3 (x, y) 2 [1/2, 1]⇥ [0, 1/2)

q4 (x, y) 2 [1/2, 1]⇥ [1/2, 1]

F collects f such that

How about without knowing the design?

Let ✓ij = f(⇠i, ⇠j). Does ✓ij have any structure?

{✓i1, ✓i2, ..., ✓in} are from the same row for each i.

{✓1j , ✓2j , ..., ✓nj} are from the same column for each j.

Without knowing the design?

⇥k =
n

✓ : ✓ij = Qz(i)z(j), with z : [n] ! [k]
o

Let k ⇣ n

�, for � 2 [0, 1].

When the graph is undirected and has no self-loop,

Aij |⇠i, ⇠j ⇠ Bernoulli(✓ij), ✓ij = f(⇠i, ⇠j).

⇠i ⇠ Unif(0, 1) i.i.d.

Chao Gao, Department of Statistics, Yale University c� October 12, 2014 2

f(x, y) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

q1 (x, y) 2 [0, 1/2)⇥ [0, 1/2)

q2 (x, y) 2 [0, 1/2)⇥ [1/2, 1]

q3 (x, y) 2 [1/2, 1]⇥ [0, 1/2)

q4 (x, y) 2 [1/2, 1]⇥ [1/2, 1]

F collects f such that

How about without knowing the design?

Let ✓ij = f(⇠i, ⇠j). Does ✓ij have any structure?

{✓i1, ✓i2, ..., ✓in} are from the same row for each i.

{✓1j , ✓2j , ..., ✓nj} are from the same column for each j.

Without knowing the design?

⇥k =
n

✓ : ✓ij = Qz(i)z(j), with z : [n] ! [k]
o

Let k ⇣ n

�, for � 2 [0, 1].

When the graph is undirected and has no self-loop,

Aij |⇠i, ⇠j ⇠ Bernoulli(✓ij), ✓ij = f(⇠i, ⇠j).

⇠i ⇠ Unif(0, 1) i.i.d.

Assumption: f 2 H↵(M)

Goal: recover f .

(⇠1, ..., ⇠n) ⇠ P⇠

Chao Gao, Department of Statistics, Yale University c� October 12, 2014 2

f(x, y) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

q1 (x, y) 2 [0, 1/2)⇥ [0, 1/2)

q2 (x, y) 2 [0, 1/2)⇥ [1/2, 1]

q3 (x, y) 2 [1/2, 1]⇥ [0, 1/2)

q4 (x, y) 2 [1/2, 1]⇥ [1/2, 1]

F collects f such that

How about without knowing the design?

Let ✓ij = f(⇠i, ⇠j). Does ✓ij have any structure?

{✓i1, ✓i2, ..., ✓in} are from the same row for each i.

{✓1j , ✓2j , ..., ✓nj} are from the same column for each j.

Without knowing the design?

⇥k =
n

✓ : ✓ij = Qz(i)z(j), with z : [n] ! [k]
o

Let k ⇣ n

�, for � 2 [0, 1].

When the graph is undirected and has no self-loop,

Aij |⇠i, ⇠j ⇠ Bernoulli(✓ij), ✓ij = f(⇠i, ⇠j).

⇠i ⇠ Unif(0, 1) i.i.d.

Assumption: f 2 F↵(M).

Goal: recover f .

(⇠1, ..., ⇠n) ⇠ P⇠

assumed to live in the parameter space ⇥k, where k is the number of cluster in the stochastic

block model. The value of {✓ij} only depends on the clusters of the i-th and the j-th nodes.

The exact definition of ⇥k is given in Section 2.2. The minimax rate for estimating the

success matrix is the following theorem.

Theorem 1.1. Under the stochastic block model, we have

inf
ˆ✓

sup
✓2⇥k

E

8

<

:

1

n2

X

i,j2[n]
(✓̂ij � ✓ij)

2

9

=

;

⇣ k2

n2

+
log k

n
,

for any 1  k  n.

The convergence rate has two terms. The nonparametric rate (k/n)2 is due to the fact

that the number of observations is at the order of n2 and the number of parameters is at

the order of k2. The other term n�1 log k, which we coin as the clustering rate, is the error

induced by the lack of identifiability of the order of nodes in exchangeable random graph

models. Namely, it is resulted from the unknown clustering structure of the n nodes. This

terms grows logarithmically as the number of cluster k increases, di↵erent from what is

obtained in the literature [13].

Next, we study the minimax rate of estimating {✓ij} modeled by the relation (1) with f

belonging to a Hölder class F↵(M). The class F↵(M) is rigorously defined in Section 2.3.

The result is stated in the following theorem.

Theorem 1.2. Consider the Hölder class F↵(M), defined in Section 2.3. We have

inf
ˆ✓

sup
f2F↵(M)

sup
⇠⇠P⇠

E

8

<

:

1

n2

X

i,j2[n]
(✓̂ij � ✓ij)

2

9

=

;

⇣
(

n� 2↵
↵+1 , 0 < ↵ < 1,

logn
n , ↵ � 1.

The expectation is jointly over {Aij} and {⇠i}.
In fact, the approximation of stochastic block model to an ↵-smooth graphon f yields an

error at the order of k�2↵ (see Lemma 2.1). In view of the minimax rate in Theorem 1.1,

picking the best k to trade o↵ the sum of the three terms k�2↵, (k/n)2, and n�1 log k gives

the minimax rate in Theorem 1.2.

The minimax rate reveals a new phenomenon in nonparametric graphon estimation.

When the smoothness parameter ↵ is smaller than 1, the rate is the typical nonparamet-

ric one. Note that the typical nonparametric rate is N� 2↵
2↵+d [50], where N is the number of

observation and d is the model dimension. Here, we are in a two-dimensional setting with

number of observation N ⇣ n2 and dimension d = 2, so that
�

n2

�� 2↵
2↵+2 = n� 2↵

↵+1 . Surpris-

ingly, in the regime ↵ 2 (0, 1), we get the exact same nonparametric minimax rate, though

we are not given the knowledge of the design {(⇠i, ⇠j)}. The cost of not observing the design

is reflected in the case with ↵ � 1. In this regime, the smoothness of the function does not

help improving the rate anymore. The minimax rate is dominated by n�1 log n, which is

essentially contributed by the logarithmic cardinality of the set of all possible partitions. A

3
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When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1

2

1

2
+

cp
n

Su�cient to prove for k = 2.

T ⇢ ⇥k

⇢2(✓, ✓0) =
2c2

n

|IS � IS0 |
n

(n� |IS � IS0 |)
n

� c2

8n
=: ✏2.

⇢2(✓, ✓0) =
1

n2

X

1i,jn

(✓ij � ✓0ij)
2 =

2c2

n

|IS � IS0 |
n

(n� |IS � IS0 |)
n

.

Theorem 1.2 (Aldous-Hoover). A random array {Aij} is jointly exchangeable if and only

if it can be represented as follows: There is a random function F : [0, 1]3 ! R such that

Aij
d
=F (⇠i, ⇠j , ⇠ij),

where {⇠i} and {⇠ij} are i.i.d. Unif[0, 1].

Proposition (Fano). Let (⇥, ⇢) be a metric space and {P✓ : ✓ 2 ⇥} a collection of probability

measures. For any T ⇢ ⇥, denote by M(✏, T, ⇢) the ✏-packing number of T w.r.t. ⇢. Define

the KL diameter of T by

dKL(T ) = sup
✓,✓02T

D(P✓||P✓0).

Then

inf
✓̂
sup
✓2⇥

E✓⇢
2
⇣

✓̂(X), ✓
⌘

� sup
✏>0

✏2

4

✓

1�
dKL(T ) + log 2

logM(✏, T, ⇢)

◆



• Construct a subset 

• Upper bound the KL-diameter 

• Lower bound the packing number
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for some c > 0 to be determined later. Define the subspace

T =
�{✓ij} 2 [0, 1]n⇥n : ✓ij = Qz(i)z(j) for some z 2 Zn,2

 

.

It is easy to see that T ⇢ ⇥
2

. With a fixed Q, the set T has a one-to-one correspondence with

Zn,2. Let us define the collection of subsets S = {S : S ⇢ [n]}. For any z 2 Zn,2, it induces a

partition {z�1(1), z�1(2)} on the set [n]. This corresponds to {S, Sc} for some S 2 S. With

this observation, we may rewrite T as

T =

(

{✓ij} 2 [0, 1]n⇥n : ✓ij =
1

2
for (i, j) 2 (S ⇥ S) [ (Sc ⇥ Sc),

✓ij =
1

2
+

cp
n

for (i, j) 2 (S ⇥ Sc) [ (Sc ⇥ S), with some S 2 S
)

.

The subspace T characterizes the di�culty of the problem due to the ignorance of the clus-

tering structure {S, Sc} of the n nodes. Such di�culty is central in the estimation problem

of network analysis. We are going to use Fano’s inequality to lower bound the risk. Accord-

ing to Proposition 4.1, it is su�cient to upper bound the KL diameter sup✓,✓02T D(P✓||P✓0)

and lower bound the packing number M(✏, T, ⇢) for some appropriate ✏ and the metric

⇢(✓, ✓0) = n�1||✓ � ✓0||. Using Proposition 4.2, we have

sup
✓,✓02T

D(P✓||P✓0)  sup
✓,✓02T

8||✓ � ✓0||2  8c2n.

To obtain a lower bound for M(✏, T, ⇢), note that for ✓, ✓0 2 T associated with S, S0 2 S, we
have

n2⇢2(✓, ✓0) =
2c2

n
|IS � IS0 | (n� |IS � IS0 |) ,

where IS stands for the indicator function of the set S. By viewing |IS� IS0 | as the Hamming

distance, we can use the Varshamov-Gilbert bound (Lemma 4.5) to pick S
1

, ..., SN ⇢ S
satisfying

1

4
n  |IS � IS0 |  3

4
n,

with N � exp(c
1

n), for some c
1

> 0. Hence, we have

M(✏, T, ⇢) � N � exp(c
1

n), with ✏2 =
c2

8n
.

Applying (20) of Proposition 4.1, we have

inf
ˆ✓

sup
✓2⇥2

P

8

<

:

1

n2

X

i,j2[n]
(✓̂ij � ✓ij)

2 � c2

32n

9

=

;

� 1� 8c2n+ log 2

c
1

n
� 0.8,

where the last inequality holds by choosing a su�ciently small c. Note that the above

derivation ignores the fact that ✓ii = 0 for i 2 [n] for the sake of clear presentation. The

argument can be easily made rigorous with slight modification. Thus, we prove the lower

bound for a finite k. For k growing with n, a more delicate construction is stated in Section

4.2.

13

Chao Gao, Department of Statistics, Yale University c� October 14, 2014 3

When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1

2

1

2
+

cp
n

Su�cient to prove for k = 2.
Chao Gao, Department of Statistics, Yale University c� October 14, 2014 3

When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1

2

1

2
+

cp
n

Su�cient to prove for k = 2.

Chao Gao, Department of Statistics, Yale University c� October 14, 2014 3

When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1

2

1

2
+

cp
n

Su�cient to prove for k = 2.

Chao Gao, Department of Statistics, Yale University c� October 14, 2014 3

When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1

2

1

2
+

cp
n

Su�cient to prove for k = 2.

Chao Gao, Department of Statistics, Yale University c� October 14, 2014 3

When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1

2

1

2
+

cp
n

Su�cient to prove for k = 2.

Chao Gao, Department of Statistics, Yale University c� October 14, 2014 3

When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1

2

1

2
+

cp
n

Su�cient to prove for k = 2.

Chao Gao, Department of Statistics, Yale University c� October 14, 2014 3

When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1

2

1

2
+

cp
n

Su�cient to prove for k = 2.

Chao Gao, Department of Statistics, Yale University c� October 14, 2014 3

When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1

2

1

2
+

cp
n

Su�cient to prove for k = 2.



Lower Bound Proof

Chao Gao, Department of Statistics, Yale University c� October 14, 2014 3

When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1

2

1

2
+

cp
n

Su�cient to prove for k = 2.
Chao Gao, Department of Statistics, Yale University c� October 14, 2014 3

When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1

2

1

2
+

cp
n

Su�cient to prove for k = 2.

Chao Gao, Department of Statistics, Yale University c� October 14, 2014 3

When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1

2

1

2
+

cp
n

Su�cient to prove for k = 2.

Chao Gao, Department of Statistics, Yale University c� October 14, 2014 3

When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1

2

1

2
+

cp
n

Su�cient to prove for k = 2.

Chao Gao, Department of Statistics, Yale University c� October 14, 2014 3

When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1

2

1

2
+

cp
n

Su�cient to prove for k = 2.

Chao Gao, Department of Statistics, Yale University c� October 14, 2014 3

When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1

2

1

2
+

cp
n

Su�cient to prove for k = 2.

Chao Gao, Department of Statistics, Yale University c� October 14, 2014 3

When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1

2

1

2
+

cp
n

Su�cient to prove for k = 2.

Chao Gao, Department of Statistics, Yale University c� October 14, 2014 3

When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1

2

1

2
+

cp
n

Su�cient to prove for k = 2.

Chao Gao, Department of Statistics, Yale University c� October 14, 2014 3

s.t.

When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1

2

1

2
+

cp
n

Su�cient to prove for k = 2.

T ⇢ ⇥k

⇢2(✓, ✓0) =
2c2

n

|IS � IS0 |
n

(n� |IS � IS0 |)
n

� c2

8n
=: ✏2.

⇢2(✓, ✓0) =
1

n2

X

1i,jn

(✓ij � ✓0ij)
2 =

2c2

n

|IS � IS0 |
n

(n� |IS � IS0 |)
n

.



Lower Bound Proof
Construct a subset: 
!
!
Upper bound the KL diameter 
!
!
!
Lower bound the packing number

Chao Gao, Department of Statistics, Yale University c� October 14, 2014 3

When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1

2

1

2
+

cp
n

Su�cient to prove for k = 2.

T ⇢ ⇥k

for some c > 0 to be determined later. Define the subspace

T =
�{✓ij} 2 [0, 1]n⇥n : ✓ij = Qz(i)z(j) for some z 2 Zn,2

 

.

It is easy to see that T ⇢ ⇥
2

. With a fixed Q, the set T has a one-to-one correspondence with

Zn,2. Let us define the collection of subsets S = {S : S ⇢ [n]}. For any z 2 Zn,2, it induces a

partition {z�1(1), z�1(2)} on the set [n]. This corresponds to {S, Sc} for some S 2 S. With

this observation, we may rewrite T as

T =

(

{✓ij} 2 [0, 1]n⇥n : ✓ij =
1

2
for (i, j) 2 (S ⇥ S) [ (Sc ⇥ Sc),

✓ij =
1

2
+

cp
n

for (i, j) 2 (S ⇥ Sc) [ (Sc ⇥ S), with some S 2 S
)

.

The subspace T characterizes the di�culty of the problem due to the ignorance of the clus-

tering structure {S, Sc} of the n nodes. Such di�culty is central in the estimation problem

of network analysis. We are going to use Fano’s inequality to lower bound the risk. Accord-

ing to Proposition 4.1, it is su�cient to upper bound the KL diameter sup✓,✓02T D(P✓||P✓0)

and lower bound the packing number M(✏, T, ⇢) for some appropriate ✏ and the metric

⇢(✓, ✓0) = n�1||✓ � ✓0||. Using Proposition 4.2, we have

sup
✓,✓02T

D(P✓||P✓0)  sup
✓,✓02T

8||✓ � ✓0||2  8c2n.

To obtain a lower bound for M(✏, T, ⇢), note that for ✓, ✓0 2 T associated with S, S0 2 S, we
have

n2⇢2(✓, ✓0) =
2c2

n
|IS � IS0 | (n� |IS � IS0 |) ,

where IS stands for the indicator function of the set S. By viewing |IS� IS0 | as the Hamming

distance, we can use the Varshamov-Gilbert bound (Lemma 4.5) to pick S
1

, ..., SN ⇢ S
satisfying

1

4
n  |IS � IS0 |  3

4
n,

with N � exp(c
1

n), for some c
1

> 0. Hence, we have

M(✏, T, ⇢) � N � exp(c
1

n), with ✏2 =
c2

8n
.

Applying (20) of Proposition 4.1, we have

inf
ˆ✓

sup
✓2⇥2

P

8

<

:

1

n2

X

i,j2[n]
(✓̂ij � ✓ij)

2 � c2

32n

9

=

;

� 1� 8c2n+ log 2

c
1

n
� 0.8,

where the last inequality holds by choosing a su�ciently small c. Note that the above

derivation ignores the fact that ✓ii = 0 for i 2 [n] for the sake of clear presentation. The

argument can be easily made rigorous with slight modification. Thus, we prove the lower

bound for a finite k. For k growing with n, a more delicate construction is stated in Section

4.2.

13



Lower Bound Proof
Lower bound the packing number

for some c > 0 to be determined later. Define the subspace

T =
�{✓ij} 2 [0, 1]n⇥n : ✓ij = Qz(i)z(j) for some z 2 Zn,2

 

.

It is easy to see that T ⇢ ⇥
2

. With a fixed Q, the set T has a one-to-one correspondence with

Zn,2. Let us define the collection of subsets S = {S : S ⇢ [n]}. For any z 2 Zn,2, it induces a

partition {z�1(1), z�1(2)} on the set [n]. This corresponds to {S, Sc} for some S 2 S. With

this observation, we may rewrite T as

T =

(

{✓ij} 2 [0, 1]n⇥n : ✓ij =
1

2
for (i, j) 2 (S ⇥ S) [ (Sc ⇥ Sc),

✓ij =
1

2
+

cp
n

for (i, j) 2 (S ⇥ Sc) [ (Sc ⇥ S), with some S 2 S
)

.

The subspace T characterizes the di�culty of the problem due to the ignorance of the clus-

tering structure {S, Sc} of the n nodes. Such di�culty is central in the estimation problem

of network analysis. We are going to use Fano’s inequality to lower bound the risk. Accord-

ing to Proposition 4.1, it is su�cient to upper bound the KL diameter sup✓,✓02T D(P✓||P✓0)

and lower bound the packing number M(✏, T, ⇢) for some appropriate ✏ and the metric

⇢(✓, ✓0) = n�1||✓ � ✓0||. Using Proposition 4.2, we have

sup
✓,✓02T

D(P✓||P✓0)  sup
✓,✓02T

8||✓ � ✓0||2  8c2n.

To obtain a lower bound for M(✏, T, ⇢), note that for ✓, ✓0 2 T associated with S, S0 2 S, we
have

n2⇢2(✓, ✓0) =
2c2

n
|IS � IS0 | (n� |IS � IS0 |) ,

where IS stands for the indicator function of the set S. By viewing |IS� IS0 | as the Hamming

distance, we can use the Varshamov-Gilbert bound (Lemma 4.5) to pick S
1

, ..., SN ⇢ S
satisfying

1

4
n  |IS � IS0 |  3

4
n,

with N � exp(c
1

n), for some c
1

> 0. Hence, we have

M(✏, T, ⇢) � N � exp(c
1

n), with ✏2 =
c2

8n
.

Applying (20) of Proposition 4.1, we have

inf
ˆ✓

sup
✓2⇥2

P

8

<

:

1

n2

X

i,j2[n]
(✓̂ij � ✓ij)

2 � c2

32n

9

=

;

� 1� 8c2n+ log 2

c
1

n
� 0.8,

where the last inequality holds by choosing a su�ciently small c. Note that the above

derivation ignores the fact that ✓ii = 0 for i 2 [n] for the sake of clear presentation. The

argument can be easily made rigorous with slight modification. Thus, we prove the lower

bound for a finite k. For k growing with n, a more delicate construction is stated in Section

4.2.

13

for some c > 0 to be determined later. Define the subspace

T =
�{✓ij} 2 [0, 1]n⇥n : ✓ij = Qz(i)z(j) for some z 2 Zn,2

 

.

It is easy to see that T ⇢ ⇥
2

. With a fixed Q, the set T has a one-to-one correspondence with

Zn,2. Let us define the collection of subsets S = {S : S ⇢ [n]}. For any z 2 Zn,2, it induces a

partition {z�1(1), z�1(2)} on the set [n]. This corresponds to {S, Sc} for some S 2 S. With

this observation, we may rewrite T as

T =

(

{✓ij} 2 [0, 1]n⇥n : ✓ij =
1

2
for (i, j) 2 (S ⇥ S) [ (Sc ⇥ Sc),

✓ij =
1

2
+

cp
n

for (i, j) 2 (S ⇥ Sc) [ (Sc ⇥ S), with some S 2 S
)

.

The subspace T characterizes the di�culty of the problem due to the ignorance of the clus-

tering structure {S, Sc} of the n nodes. Such di�culty is central in the estimation problem

of network analysis. We are going to use Fano’s inequality to lower bound the risk. Accord-

ing to Proposition 4.1, it is su�cient to upper bound the KL diameter sup✓,✓02T D(P✓||P✓0)

and lower bound the packing number M(✏, T, ⇢) for some appropriate ✏ and the metric

⇢(✓, ✓0) = n�1||✓ � ✓0||. Using Proposition 4.2, we have

sup
✓,✓02T

D(P✓||P✓0)  sup
✓,✓02T

8||✓ � ✓0||2  8c2n.

To obtain a lower bound for M(✏, T, ⇢), note that for ✓, ✓0 2 T associated with S, S0 2 S, we
have

n2⇢2(✓, ✓0) =
2c2

n
|IS � IS0 | (n� |IS � IS0 |) ,

where IS stands for the indicator function of the set S. By viewing |IS� IS0 | as the Hamming

distance, we can use the Varshamov-Gilbert bound (Lemma 4.5) to pick S
1

, ..., SN ⇢ S
satisfying

1

4
n  |IS � IS0 |  3

4
n,

with N � exp(c
1

n), for some c
1

> 0. Hence, we have

M(✏, T, ⇢) � N � exp(c
1

n), with ✏2 =
c2

8n
.

Applying (20) of Proposition 4.1, we have

inf
ˆ✓

sup
✓2⇥2

P

8

<

:

1

n2

X

i,j2[n]
(✓̂ij � ✓ij)

2 � c2

32n

9

=

;

� 1� 8c2n+ log 2

c
1

n
� 0.8,

where the last inequality holds by choosing a su�ciently small c. Note that the above

derivation ignores the fact that ✓ii = 0 for i 2 [n] for the sake of clear presentation. The

argument can be easily made rigorous with slight modification. Thus, we prove the lower

bound for a finite k. For k growing with n, a more delicate construction is stated in Section

4.2.

13

Chao Gao, Department of Statistics, Yale University c� October 14, 2014 3

s.t.

When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1

2

1

2
+

cp
n

Su�cient to prove for k = 2.

T ⇢ ⇥k

Chao Gao, Department of Statistics, Yale University c� October 14, 2014 3

s.t.

When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1

2

1

2
+

cp
n

Su�cient to prove for k = 2.

T ⇢ ⇥k

⇢2(✓, ✓0) =
2c2

n

|IS � IS0 |
n

(n� |IS � IS0 |)
n

� c2

8n
=: ✏2.

for some c > 0 to be determined later. Define the subspace

T =
�{✓ij} 2 [0, 1]n⇥n : ✓ij = Qz(i)z(j) for some z 2 Zn,2

 

.

It is easy to see that T ⇢ ⇥
2

. With a fixed Q, the set T has a one-to-one correspondence with

Zn,2. Let us define the collection of subsets S = {S : S ⇢ [n]}. For any z 2 Zn,2, it induces a

partition {z�1(1), z�1(2)} on the set [n]. This corresponds to {S, Sc} for some S 2 S. With

this observation, we may rewrite T as

T =

(

{✓ij} 2 [0, 1]n⇥n : ✓ij =
1

2
for (i, j) 2 (S ⇥ S) [ (Sc ⇥ Sc),

✓ij =
1

2
+

cp
n

for (i, j) 2 (S ⇥ Sc) [ (Sc ⇥ S), with some S 2 S
)

.

The subspace T characterizes the di�culty of the problem due to the ignorance of the clus-

tering structure {S, Sc} of the n nodes. Such di�culty is central in the estimation problem

of network analysis. We are going to use Fano’s inequality to lower bound the risk. Accord-

ing to Proposition 4.1, it is su�cient to upper bound the KL diameter sup✓,✓02T D(P✓||P✓0)

and lower bound the packing number M(✏, T, ⇢) for some appropriate ✏ and the metric

⇢(✓, ✓0) = n�1||✓ � ✓0||. Using Proposition 4.2, we have

sup
✓,✓02T

D(P✓||P✓0)  sup
✓,✓02T

8||✓ � ✓0||2  8c2n.

To obtain a lower bound for M(✏, T, ⇢), note that for ✓, ✓0 2 T associated with S, S0 2 S, we
have

n2⇢2(✓, ✓0) =
2c2

n
|IS � IS0 | (n� |IS � IS0 |) ,

where IS stands for the indicator function of the set S. By viewing |IS� IS0 | as the Hamming

distance, we can use the Varshamov-Gilbert bound (Lemma 4.5) to pick S
1

, ..., SN ⇢ S
satisfying

1

4
n  |IS � IS0 |  3

4
n,

with N � exp(c
1

n), for some c
1

> 0. Hence, we have

M(✏, T, ⇢) � N � exp(c
1

n), with ✏2 =
c2

8n
.

Applying (20) of Proposition 4.1, we have

inf
ˆ✓

sup
✓2⇥2

P

8

<

:

1

n2

X

i,j2[n]
(✓̂ij � ✓ij)

2 � c2

32n

9

=

;

� 1� 8c2n+ log 2

c
1

n
� 0.8,

where the last inequality holds by choosing a su�ciently small c. Note that the above

derivation ignores the fact that ✓ii = 0 for i 2 [n] for the sake of clear presentation. The

argument can be easily made rigorous with slight modification. Thus, we prove the lower

bound for a finite k. For k growing with n, a more delicate construction is stated in Section

4.2.

13



Lower Bound Proof
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z1 : {1, 2, ..., n} ! {1, 2, ..., k}

z2 : {1, 2, ...,m} ! {1, 2, ..., l}

E(Aij) = ✓ij = Qz1(i)z2(j)

Aij ⇠ Bernoulli(✓ij)

✓ij = Qz(i)z(j)

Goal: recover ✓ij

yij = f(⇠ij) + ✏ij , ⇠ij 2 [0, 1]2, i, j = 1, 2, .., n
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2
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xi 2 D, ✏i ⇠ N(0, 1)

Common assumption: f is smooth on D.

Goal: recover f from both only y

Without observing design

yi = ✓i + ✏i.

⇥ = {✓ : half ✓i is q1, half ✓i is q2}

F =
n

f : f(x) = q1 for x 2 (0, 1/2], f(x) = q2 for x 2 (1/2, 1]
o
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Upper Bound
Parameter Estimation

Problem

Estimate the matrix θ under the loss ∥θ̂ − θ∥2F.

Oracle solution

When the clustering z is known, an obvious estimator

θ̂ij =
1

|z−1(a)||z−1(b)|
∑

(i,j)∈z−1(a)×z−1(b)

Aij, for (i, j) ∈ z−1(a)× z−1(b)

achieves the rate

∥θ̂ − θ∥2F ≤ OP

(
k2
)
.

7



Upper BoundParameter Estimation

An equivalent form (least squares)

Fixing the known z, then solve

min
θ

∥A− θ∥2F

s.t. θij = Qz(i)z(j) for some Q = QT ∈ [0, 1]k×k

A natural estimator

Solve

min
θ

∥A− θ∥2F

s.t. θij = Qz(i)z(j) for some Q = QT ∈ [0, 1]k×k

and some z : {1, 2, ..., n} → {1, 2, ..., k}.

8
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and some z : {1, 2, ..., n} → {1, 2, ..., k}.

8

Parameter Estimation

Convergence rate

Theorem 1 (Gao, Lu & Z.) The constrained least squares estimator

satisfies

∥θ̂ − θ∥2F ≤ OP

(
k2 + n log k

)
.

A question

The ignorance of z leads to an extra term n log k.

Is this term unavoidable?

9



Bayes Estimation

Chao Gao, Department of Statistics, Yale University

c� March 12, 2015 3

s.t.

When 1 < k  O(1), the minimax rate is
1

n
.

S Sc 1
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2
+

cp
n

Su�cient to prove for k = 2.

T ⇢ ⇥k

⇢2(✓, ✓0) =
2c2

n

|IS � IS0 |
n

(n� |IS � IS0 |)
n

� c2

8n
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n2
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1i,jn
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2 =

2c2
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n
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n

.

Theorem 1.2 (Aldous-Hoover). A random array {Aij} is jointly exchangeable if and only

if it can be represented as follows: There is a random function F : [0, 1]3 ! R such that

Aij
d
=F (⇠i, ⇠j , ⇠ij),

where {⇠i} and {⇠ij} are i.i.d. Unif[0, 1].

Proposition (Fano). Let (⇥, ⇢) be a metric space and {P✓ : ✓ 2 ⇥} a collection of probability

measures. For any T ⇢ ⇥, denote by M(✏, T, ⇢) the ✏-packing number of T w.r.t. ⇢. Define

the KL diameter of T by

dKL(T ) = sup
✓,✓02T

D(P✓||P✓0).

Then

inf
✓̂
sup
✓2⇥

E✓⇢
2
⇣

✓̂(X), ✓
⌘

� sup
✏>0

✏2

4

✓

1�
dKL(T ) + log 2

logM(✏, T, ⇢)

◆

1. Sample k ⇠ ⇡.

2. Sample z 2 {z : [n] ! [k]}.

3. Sample Q ⇠ f .

4. Let ✓ij = Qz(i)z(j).
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