Seminar “Statistics for structures”

A graphical perspective on Gauss-Markov process priors

Moritz Schauer
University of Amsterdam
Outline

- Midpoint displacement construction of a Brownian motion
- Corresponding Gaussian Markov random field
- Chordal graphs
- Sparse Cholesky decomposition
- Connection to inference of diffusion processes
Mid-point displacement

Lévy-Ciesielski construction of a Brownian motion \((W_t)_{t \in [0,1]}\)
Figure: Elements $\psi_{l,k}$, $1 \leq l \leq 3$ of the hierarchical (Faber-) Schauder basis
Schauder basis functions

A location and scale family based on the “hat” function
\[\Lambda(x) = (2x)1_{[0, \frac{1}{2})} + 2(x - 1)1_{[\frac{1}{2}, 1]} \]

\[\psi_{j,k}(x) = \Lambda(2^{j-1}x - k), \quad j \geq 1, \quad k = 0, \ldots, 2^{j-1} - 1 \]
Mid-point displacement II

Start with Brownian motion bridge \((W_t)_{t \in [0,1]}\)

\[
W^J = \sum_{j=1}^{J} \sum_{k=0}^{2j-1-1} Z_{j,k} \psi_{j,k}
\]

\(W^J\) – truncated Faber–Schauder expansion

\[
Z^J = \text{vec} \left(Z_{j,k}, j \leq J, 0 \leq k < 2^{j-1} \right)
\]

\(Z^J\) – independent zero mean Gaussian random variables

\[
Z_{j,k} = W_{2^{-j}(2k+1)} - \frac{1}{2} \left(W_{2^{-j+1}k} + W_{2^{-j+1}(k+1)} \right)
\]
Mid-point displacement II

Start with mean zero Gauss–Markov process \((W_t)_{t \in [0,1]}\)

\[
W^J = \sum_{j=1}^{J} \sum_{k=0}^{2^{j-1}-1} Z_{j,k} \psi_{j,k}
\]

\(W^J\) – truncated Faber–Schauder expansion

\[
Z^J = \text{vec} \left(Z_{j,k}, j \leq J, 0 \leq k < 2^{j-1} \right)
\]

\(Z^J\) – mean zero Gaussian vector with precision matrix \(\Gamma\)

\[
Z_{j,k} = W_{2^{-j}(2k+1)} - \frac{1}{2} (W_{2^{-j+1}k} + W_{2^{-j+1}(k+1)})
\]
Markov property

Write \(\iota := (j, k), \iota' = (j', k') \)

In general

\[\Gamma_{\iota, \iota'} = 0 \quad \text{if} \quad Z_\iota \perp \perp Z_{\iota'} \mid Z_{\{\iota, \iota'\}^c} \]

By the Markov property

\[\Gamma_{\iota, \iota'} = 0 \quad \text{if} \quad \psi_\iota \cdot \psi_{\iota'} \equiv 0 \]
Gaussian Markov random field

A Gaussian vector \((Z_1, \ldots, Z_n)\) together with the graph \(\mathcal{G}(\{1, \ldots, n\}, \mathcal{E})\) where

\[
\text{no edge in } \mathcal{E} \text{ between } \iota \text{ and } \iota' \quad \text{if} \quad Z_{\iota} \perp \perp Z_{\iota'} \mid Z_{\{\iota, \iota\}^c}
\]
A chordal graph is a graph in which all cycles of four or more vertices have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle.
Interval graph

The open supports of $\psi_{j,k}$ form an interval graph on pairs (j, k). Interval graphs are chordal graphs.

In red a cycle of four vertices with a blue chord\(^1\)

\(^1\)An interval graph is the intersection graph of a family of intervals on the real line. Interval graphs are chordal graphs.
Sampling from the prior

- Sample J
- Compute factorization $SS' = \Gamma^J$
- Solve by backsubstitution

$$L'Z = WN$$

with WN – standard white noise

Hence: How to find sparse factors?
Perfect elimination ordering

“A perfect elimination ordering in a graph is an ordering of the vertices of the graph such that, for each vertex \(v \), \(v \) and the neighbors of \(v \) that occur after \(v \) in the order form a clique.”

Example:

\[
(3, 0) \ (3, 1) \ (3, 2) \ (3, 4) \ (2, 0) \ (2, 1) \ (1, 0)
\]
Ordering the columns and rows of Γ according to the perfect elimination ordering of the chordal graph: \tilde{S} is the sparse Cholesky factor of $\tilde{\Gamma}$

$\tilde{\Gamma} = \begin{pmatrix} \square & \square & \square & \square & \square & \square & \square \\ \square & \square & \square & \square & \square & \square & \square \\ \square & \square & \square & \square & \square & \square & \square \\ \square & \square & \square & \square & \square & \square & \square \\ \square & \square & \square & \square & \square & \square & \square \\ \square & \square & \square & \square & \square & \square & \square \\ \square & \square & \square & \square & \square & \square & \square \end{pmatrix}$

$\tilde{S} = \begin{pmatrix} \square & \square & \square & \square \\ \square & \square & \square & \square \end{pmatrix}$

Cholesky decomposition has no fill in!
Exploiting hierarchical structure

Order rows and columns of Γ according to the location of the maxima of $\psi_{j,k}$. Γ has sparsity structure

$$(3, 0) (2, 0) (3, 1) (1, 0) (3, 2) (2, 1) (3, 3)$$

$$\Gamma = SS'$$ where

$$S = \begin{pmatrix}
\end{pmatrix}.$$
Recursive sparsity pattern

\[S^1 = (s_{11}) \]

\[S^J = \begin{bmatrix}
S_l^{J-1} & 0 & 0 \\
S_{cl} & s_{cc} & S_{cr} \\
0 & 0 & S_r^{J-1}
\end{bmatrix} \begin{bmatrix}
2^{J-1} - 1 \\
1 \\
2^{J-1} - 1
\end{bmatrix} \]
Hierarchical back-substitution

A hierarchical back-substitution problem of the form

\[
\begin{bmatrix}
S_l & 0 & 0 \\
S_{cl} & s_{cc} & S_{cr} \\
0 & 0 & S_r
\end{bmatrix}
\begin{bmatrix}
X_l \\
x_c \\
X_r
\end{bmatrix}
= \begin{bmatrix}
B_l \\
b_c \\
B_r
\end{bmatrix}
\]

\[(m+1+m) \times (m+1+m)\]

can be recursively solved by solving the back-substitution problems \(S_l X_l = B_l\), \(S_r X_r = B_r\) and setting

\[x_c = s_{cc}^{-1} \cdot (b_c - S_{cl} X_l - S_{cr} X_r)\]
Factorization in quasi linear time

\[
\begin{bmatrix}
A_l & A'_cl & 0 \\
A_{cl} & a_{cc} & A_{cr} \\
0 & A'_{cr} & A_r
\end{bmatrix}
= \begin{bmatrix}
S_l & 0 & 0 \\
S_{cl} & s_{cc} & S_{cr} \\
0 & 0 & S_r
\end{bmatrix}
\begin{bmatrix}
S_l & S_{cr} & 0 \\
0 & s_{cc} & 0 \\
0 & S_{cr} & S_r
\end{bmatrix}
\]

\[
= \begin{bmatrix}
S_lS'_l \\
S'_{cl}S_l \\
0
\end{bmatrix}
\begin{bmatrix}
S'_lS_{cl} \\
s_{cc}^2 + S_{cl}S'_{cl} + S_{cr}S'_{cr} \\
0
\end{bmatrix}
\begin{bmatrix}
S'_lS_{cr} \\
S'_{cr}S_r \\
S'_rS_r
\end{bmatrix}
\]

Here \(A_l = S_lS'_l \) and \(A_r = S_rS'_r \) are two hierarchical factorization problems of level \(J - 1 \), \(A_l = S'_{cl}S_l \) and \(A_r = S'_{cr}S_r \) are hierarchical back-substitution problems and

\[
s_{cc} = \sqrt{a_{cc} - S_{cl}S'_{cl} + S_{cr}S'_{cr}}.
\]
Approximative sparse inversion using nested dissection
Application: Nonparametric inference for diffusion process

\[dX_t = b_0(X_t)\, dt + dW_t \]

(1)

Prior \(P(J \geq j) \geq C \exp(-2^j) \) and

\[
b = \sum_{j=1}^{J} \sum_{k=0}^{2^{j-1}-1} Z_{j,k} \psi_{j,k}
\]

where \(\alpha = \frac{1}{2} \), \(\Xi^J = \text{diag}(2^{-2(j-1)\alpha}, 1 \leq j \leq J, 0 \leq k < 2^{j-1}) \)
Gaussian inverse problem

Likelihood

\[p(X \mid b) = \exp \left(\int_0^T b(X_t) \, dX_t - \frac{1}{2} \int_0^T b^2(X_t) \, dt \right) \]

\[\mu^J_\iota = \int_0^T \psi_\iota(X_t) \, dX_t, \quad \iota = 1, \ldots, 2^J - 1 \]

\[G^J_{\iota,\iota'} = \int_0^T \psi_\iota(X_t) \psi_{\iota'}(X_t) \, dt, \quad \iota, \iota' = 1, \ldots, 2^J - 1. \]

\(\Gamma^J \) and \(G^J \) have the same sparsity pattern
Conjugate posterior

For fix level J,

$$Z^J \mid J, X \sim \mathcal{N}(\Sigma^J \mu^J, \Sigma^J)$$

where $\Sigma^J = (\Gamma^J + G^J)^{-1}$.

On J a reversible jump algorithm can be used.
Posterior contraction rates (periodic case)

Besov norm, supremum norm for $f = \sum \sum z_{j,k} \psi_{j,k}$

$$\| f \|_\alpha = \sup_{j \geq 1, k} 2^{(j-1)\alpha} |z_{j,k}| \quad \| f \|_\infty \leq \sum_j \max_k |z_{j,k}|$$

Sieves

$$B_{L,M} = \left\{ \sum_{j=1}^{L} \sum_{k=0}^{2^{j-1}-1} z_{j,k} \psi_{j,k} : 2^{\alpha(j-1)} |z_{j,k}| \leq M, j, k = \ldots \right\}$$

Rate

$$T^{-\frac{\beta}{1+2\beta}} \log(T)^{\frac{\beta}{1+2\beta}} \quad \beta \geq \alpha$$
Anderson’s lemma

If $X \sim N(0, \Sigma_X)$ and $Y \sim N(0, \Sigma_Y)$ independent with $\Sigma_X \preceq_{pd} \Sigma_Y$ positive definite, then for all symmetric convex sets $P(Y \in C) \leq P(X \in C)$.
Summary

- Midpoint displacement construction of Gauss-Markov processes
- Corresponding Gaussian Markov random field
- Chordal graphs and perfect elimination orderings
- Sparse Cholesky decomposition
- Rates for randomly truncated prior
Image sources