Seminar "Statistics for structures"

A graphical perspective on Gauss-Markov process priors

Moritz Schauer
University of Amsterdam

Outline

- Midpoint displacement construction of a Brownian motion
- Corresponding Gaussian Markov random field
- Chordal graphs
- Sparse Cholesky decomposition
- Connection to inference of diffusion processes

Mid-point displacement

Lévy-Ciesielski construction of a Brownian motion $\left(W_{t}\right)_{t \in[0,1]}$

Faber-Schauder basis

Figure: Elements $\psi_{l, k}, 1 \leq l \leq 3$ of the hierarchical (Faber-) Schauder basis

Schauder basis functions

A location and scale family based on the "hat" function $\Lambda(x)=(2 x) \mathbf{1}_{\left[0, \frac{1}{2}\right)}+2(x-1) \mathbf{1}_{\left[\frac{1}{2}, 1\right]}$ $\psi_{j, k}(x)=\bigwedge\left(2^{j-1} x-k\right), \quad j \geq 1, \quad k=0, \ldots, 2^{j-1}-1$

Mid-point displacement II

Start with Brownian motion bridge $\left(W_{t}\right)_{t \in[0,1]}$

$$
W^{J}=\sum_{j=1}^{J} \sum_{k=0}^{2^{j-1}-1} Z_{j, k} \psi_{j, k}
$$

W^{J} - truncated Faber-Schauder expansion

$$
Z^{J}=\operatorname{vec}\left(Z_{j, k}, j \leq J, 0 \leq k<2^{j-1}\right)
$$

Z^{J} - independent zero mean Gaussian random variables

$$
Z_{j, k}=W_{2^{-j}(2 k+1)}-\frac{1}{2}\left(W_{2^{-j+1} k}+W_{2^{-j+1}(k+1)}\right)
$$

Mid-point displacement II

Start with mean zero Gauss-Markov process $\left(W_{t}\right)_{t \in[0,1]}$

$$
W^{J}=\sum_{j=1}^{J} \sum_{k=0}^{2^{j-1}-1} Z_{j, k} \psi_{j, k}
$$

W^{J} - truncated Faber-Schauder expansion

$$
Z^{J}=\operatorname{vec}\left(Z_{j, k}, j \leq J, 0 \leq k<2^{j-1}\right)
$$

Z^{J} - mean zero Gaussian vector with precision matrix Γ

$$
Z_{j, k}=W_{2^{-j}(2 k+1)}-\frac{1}{2}\left(W_{2^{-j+1} k}+W_{2^{-j+1}(k+1)}\right)
$$

Markov property

Write $\iota:=(j, k), \iota^{\prime}=\left(j^{\prime}, k^{\prime}\right)$
In general

$$
\Gamma_{\iota, \iota^{\prime}}=0 \quad \text { if } \quad Z_{\iota} \Perp Z_{\iota^{\prime}} \mid Z_{\left\{\iota, \iota^{\prime}\right\}^{C}}
$$

By the Markov property

$$
\Gamma_{\iota, \iota^{\prime}}=0 \quad \text { if } \quad \psi_{\iota} \cdot \psi_{\iota^{\prime}} \equiv 0
$$

Gaussian Markov random field

A Gaussian vector $\left(Z_{1}, \ldots, Z_{n}\right)$ together with the graph $\mathcal{G}(\{1, \ldots, n\}, \mathcal{E})$ where
no edge in \mathcal{E} between ι and ι^{\prime} if $Z_{\iota} \Perp Z_{\iota^{\prime}} \mid Z_{\left\{,, \iota^{\prime}\right\}} \mathcal{C}$

Chordal graph / Triangulated graph

"A chordal graph is a graph in which all cycles of four or more vertices have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle."

Interval graph

The open supports of $\psi_{j, k}$ form an interval graph on pairs (j, k). Interval graphs are chordal graphs.

In red a cycle of four vertices with a blue chord ${ }^{1}$
${ }^{1}$ An interval graph is the intersection graph of a family of intervals on the real line. Interval graphs are chordal graphs.

Sampling from the prior

- Sample J
- Compute factorization $S S^{\prime}=\Gamma^{J}$
- Solve by backsubstitution

$$
L^{\prime} Z=\mathrm{WN}
$$

with WN - standard white noise
Hence: How to find sparse factors?

Perfect elimination ordering

"A perfect elimination ordering in a graph is an ordering of the vertices of the graph such that, for each vertex v , v and the neighbors of v that occur after v in the order form a clique." Example:

$$
(3,0)(3,1)(3,2)(3,4)(2,0)(2,1)(1,0)
$$

Ordering the columns and rows of Γ according to the perfect elimination ordering of the chordal graph:
\tilde{S} is the sparse Cholesky factor of $\tilde{\Gamma}$

Cholesky decomposition has no fill in!

Exploiting hierarchical structure

Order rows and columns of Γ according to the location of the maxima of $\psi_{j, k}$. Γ has sparsity structure

$$
(3,0)(2,0)(3,1)(1,0)(3,2)(2,1)(3,3)
$$

$\Gamma=S S^{\prime}$ where

Recursive sparsity pattern

$$
\begin{gathered}
S^{1}=\left(s_{11}\right) \\
\left.S^{J}=\left[\begin{array}{ccc}
S_{l}^{J-1} & 0 & 0 \\
S_{c l} & s_{c c} & S_{c r} \\
0 & 0 & S_{r}^{J-1}
\end{array}\right]\right\} \begin{array}{c}
2^{J-1}-1 \\
1 \\
2^{J-1}-1
\end{array}
\end{gathered}
$$

Hierarchical back-substitution

A hierarchical back-substitution problem of the form

$$
\underbrace{\left[\begin{array}{ccc}
S_{l} & 0 & 0 \\
S_{c l} & s_{c c} & S_{c r} \\
0 & 0 & S_{r}
\end{array}\right]}_{(m+1+m) \times(m+1+m)}\left[\begin{array}{l}
X_{l} \\
x_{c} \\
X_{r}
\end{array}\right]=\left[\begin{array}{c}
B_{l} \\
b_{c} \\
B_{r}
\end{array}\right]
$$

can be recursively solved by solving the back-substitution problems $S_{l} X_{l}=B_{l}, S_{r} X_{r}=B_{r}$ and setting

$$
x_{c}=s_{c c}^{-1} \cdot\left(b_{c}-S_{c l} X_{l}-S_{c r} X_{r}\right)
$$

Factorization in quasi linear time

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
A_{l} & A_{c l}^{\prime} & 0 \\
A_{c l} & a_{c c} & A_{c r} \\
0 & A_{c r}^{\prime} & A_{r}
\end{array}\right]=\left[\begin{array}{ccc}
S_{l} & 0 & 0 \\
S_{c l} & s_{c c} & S_{c r} \\
0 & 0 & S_{r}
\end{array}\right]\left[\begin{array}{ccc}
S_{l} & S_{c r} & 0 \\
0 & s_{c c} & 0 \\
0 & S_{c r} & S_{r}
\end{array}\right]} \\
& \quad=\left[\begin{array}{ccc}
S_{l} S_{l}^{\prime} & S_{l}^{\prime} S_{c l} & 0 \\
S_{c l}^{\prime} S_{l} & s_{c c}^{2}+S_{c l} S_{c l}^{\prime}+S_{c r} S_{c r}^{\prime} & S_{r}^{\prime} S_{c r} \\
0 & S_{c r}^{\prime} S_{r} & S_{r} S_{r}^{\prime}
\end{array}\right]
\end{aligned}
$$

Here $A_{l}=S_{l} S_{l}^{\prime}$ and $A_{r}=S_{r} S_{r}^{\prime}$ are two hierarchical factorization problems of level $J-1, A_{l}=S_{c l}^{\prime} S_{l}$ and $A_{r}=S_{c r}^{\prime} S_{r}$ are hierarchical back-substitution problems and

$$
s_{c c}=\sqrt{a_{c c}-S_{c l} S_{c l}^{\prime}+S_{c r} S_{c r}^{\prime}} .
$$

Approximative sparse inversion using nested dissection

[2]

Application: Nonparametric inference for diffusion process

$$
\begin{equation*}
\mathrm{d} X_{t}=b_{0}\left(X_{t}\right) \mathrm{d} t+\mathrm{d} W_{t} \tag{1}
\end{equation*}
$$

Prior $P(J \geq j) \geq C \exp \left(-2^{j}\right)$ and

$$
\begin{aligned}
& b=\sum_{j=1}^{J} \sum_{k=0}^{2^{j-1}-1} Z_{j, k} \psi_{j, k} \\
& M \Xi^{J} \geq_{p d} \Gamma^{J} \geq_{p d} m \Xi^{J}
\end{aligned}
$$

where $\alpha=\frac{1}{2}, \Xi^{J}=\operatorname{diagm}\left(2^{-2(j-1) \alpha}, 1 \leq j \leq J, 0 \leq k<2^{j-1}\right)$

Gaussian inverse problem

Likelihood

$$
\begin{gathered}
p(X \mid b)=\exp \left(\int_{0}^{T} b\left(X_{t}\right) \mathrm{d} X_{t}-\frac{1}{2} \int_{0}^{T} b^{2}\left(X_{t}\right) \mathrm{d} t\right) \\
\mu_{\iota}^{J}=\int_{0}^{T} \psi_{\iota}\left(X_{t}\right) \mathrm{d} X_{t}, \quad \iota=1, \ldots, 2^{J}-1 \\
G_{\iota, \iota^{\prime}}^{J}=\int_{0}^{T} \psi_{\iota}\left(X_{t}\right) \psi_{\iota^{\prime}}\left(X_{t}\right) \mathrm{d} t, \quad \iota, \iota^{\prime}=1, \ldots, 2^{J}-1
\end{gathered}
$$

Γ^{J} and G^{J} have the same sparsity pattern

Conjugate posterior

For fix level J,

$$
Z^{J} \mid J, X \sim \mathcal{N}\left(\Sigma^{J} \mu^{J}, \Sigma^{J}\right)
$$

where $\Sigma^{J}=\left(\Gamma^{J}+G^{J}\right)^{-1}$.
On J a reversible jump algorithm can be used.

Posterior contraction rates (periodic case)

Besov norm, supremum norm for $f=\sum \sum z_{j, k} \psi_{j, k}$

$$
\|f\|_{\alpha}=\sup _{j \geq 1, k} 2^{(j-1) \alpha}\left|z_{j, k}\right| \quad\|f\|_{\infty} \leq \sum_{j} \max _{k}\left|z_{j, k}\right|
$$

Sieves

$$
B_{L, M}=\left\{\sum_{j=1}^{L} \sum_{k=0}^{2^{j-1}-1} z_{j, k} \psi_{j, k}: 2^{\alpha(j-1)}\left|z_{j, k}\right| \leq M, j, k=\ldots\right\}
$$

Rate

$$
T^{-\frac{\beta}{1+2 \beta}} \log (T)^{\frac{\beta}{1+2 \beta}} \quad \beta \geq \alpha
$$

Anderson's lemma

If $X \sim N\left(0, \Sigma_{X}\right)$ and $Y \sim N\left(0, \Sigma_{Y}\right)$ independent with $\Sigma_{X} \leq_{p d} \Sigma_{Y}$ positive definite, then then for all symmetric convex sets $P(Y \in C) \leq P(X \in C)$.

Summary

- Midpoint displacement construction of Gauss-Markov processes
- Corresponding Gaussian Markov random field
- Chordal graphs and perfect elimination orderings
- Sparse Cholesky decomposition
- Rates for randomly truncated prior

Image sources

[1] http://math.stackexchange.com/questions/251856 /area-enclosed-by-2-dimensional-random-curve [2] http://kartoweb.itc.nl/geometrics/ reference\%20surfaces/body.htm

