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Outline

I Midpoint displacement construction of a Brownian motion

I Corresponding Gaussian Markov random field

I Chordal graphs

I Sparse Cholesky decomposition

I Connection to inference of diffusion processes
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Mid-point displacement

Lévy-Ciesielski construction of a Brownian motion (Wt)t∈[0,1]

[1]
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Faber-Schauder basis

Figure: Elements ψl,k, 1 ≤ l ≤ 3 of the hierarchical (Faber-)
Schauder basis
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Schauder basis functions

A location and scale family based on the “hat” function∧
(x) = (2x)1[0, 1

2
) + 2(x− 1)1[ 1

2
,1]

ψj,k(x) =
∧

(2j−1x− k), j ≥ 1, k = 0, . . . , 2j−1 − 1

5 / 26



Mid-point displacement II

Start with Brownian motion bridge (Wt)t∈[0,1]

W J =
J∑
j=1

2j−1−1∑
k=0

Zj,kψj,k

W J – truncated Faber–Schauder expansion

ZJ = vec (Zj,k, j ≤ J, 0 ≤ k < 2j−1)

ZJ – independent zero mean Gaussian random variables

Zj,k = W2−j(2k+1) −
1
2

(W2−j+1k +W2−j+1(k+1))
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Mid-point displacement II

Start with mean zero Gauss–Markov process (Wt)t∈[0,1]

W J =
J∑
j=1

2j−1−1∑
k=0

Zj,kψj,k

W J – truncated Faber–Schauder expansion

ZJ = vec (Zj,k, j ≤ J, 0 ≤ k < 2j−1)

ZJ – mean zero Gaussian vector with precision matrix Γ

Zj,k = W2−j(2k+1) −
1
2

(W2−j+1k +W2−j+1(k+1))
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Markov property

Write ι := (j, k), ι′ = (j′, k′)
In general

Γι,ι′ = 0 if Zι ⊥⊥ Zι′ | Z{ι,ι′}C

By the Markov property

Γι,ι′ = 0 if ψι · ψι′ ≡ 0
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Gaussian Markov random field

A Gaussian vector (Z1, . . . , Zn) together with the graph
G({1, . . . , n}, E) where

no edge in E between ι and ι′ if Zι ⊥⊥ Zι′ | Z{ι,ι′}C
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Chordal graph / Triangulated graph

“A chordal graph is a graph in which all cycles of four or more
vertices have a chord, which is an edge that is not part of the
cycle but connects two vertices of the cycle.”
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Interval graph
The open supports of ψj,k form an interval graph on pairs
(j, k). Interval graphs are chordal graphs.

In red a cycle of four vertices with a blue chord1

1An interval graph is the intersection graph of a family of intervals on
the real line. Interval graphs are chordal graphs.
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Sampling from the prior

I Sample J

I Compute factorization SS′ = ΓJ

I Solve by backsubstitution

L′Z = WN

with WN – standard white noise

Hence: How to find sparse factors?
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Perfect elimination ordering

“A perfect elimination ordering in a graph is an ordering of the
vertices of the graph such that, for each vertex v, v and the
neighbors of v that occur after v in the order form a clique.”
Example:

(3, 0) (3, 1) (3, 2) (3, 4) (2, 0) (2, 1) (1, 0)
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Ordering the columns and rows of Γ according to the perfect
elimination ordering of the chordal graph:
S̃ is the sparse Cholesky factor of Γ̃

Γ̃ =


� � �
� � �
� � �
� � �

� � � �
� � � �

� � � � � � �

 S̃ =


�
�
�
�

� � �
� � �

� � � � � � �


Cholesky decomposition has no fill in!
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Exploiting hierarchical structure
Order rows and columns of Γ according to the location of the
maxima of ψj,k. Γ has sparsity structure

(3, 0) (2, 0) (3, 1) (1, 0) (3, 2) (2, 1) (3, 3)

Γ =


� � �
� � � �
� � �

� � � � � � �
� � �
� � � �
� � �

 ,

Γ = SS′ where

S =


�
� � �

�
� � � � � � �

�
� � �

�

 .
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Recursive sparsity pattern

S1 = (s11)

SJ =

SJ−1
l 0 0
Scl scc Scr
0 0 SJ−1

r


2J−1 − 1

1
2J−1 − 1
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Hierarchical back-substitution

A hierarchical back-substitution problem of the formSl 0 0
Scl scc Scr
0 0 Sr


︸ ︷︷ ︸

(m+1+m)×(m+1+m)

Xl

xc
Xr

 =

Blbc
Br



can be recursively solved by solving the back-substitution
problems SlXl = Bl, SrXr = Br and setting

xc = s−1
cc · (bc − SclXl − ScrXr)
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Factorization in quasi linear time

Al A′cl 0
Acl acc Acr
0 A′cr Ar

 =

Sl 0 0
Scl scc Scr
0 0 Sr

Sl Scr 0
0 scc 0
0 Scr Sr


=

SlS′l S′lScl 0
S′clSl s2cc + SclS

′
cl + ScrS

′
cr S′rScr

0 S′crSr SrS
′
r


Here Al = SlS

′
l and Ar = SrS

′
r are two hierarchical

factorization problems of level J − 1, Al = S′clSl and
Ar = S′crSr are hierarchical back-substitution problems and

scc =
√
acc − SclS′cl + ScrS′cr.
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Approximative sparse inversion using
nested dissection

[2]
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Application: Nonparametric inference for
diffusion process

dXt = b0(Xt) dt+ dWt (1)

Prior P (J ≥ j) ≥ C exp(−2j) and

b =
J∑
j=1

2j−1−1∑
k=0

Zj,kψj,k

MΞJ ≥pd ΓJ ≥pd mΞJ

where α = 1
2 , ΞJ = diagm(2−2(j−1)α, 1 ≤ j ≤ J, 0 ≤ k < 2j−1)
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Gaussian inverse problem

Likelihood

p(X | b) = exp
(∫ T

0
b(Xt) dXt −

1
2

∫ T

0
b2(Xt) dt

)

µJι =
∫ T

0
ψι(Xt) dXt, ι = 1, . . . , 2J − 1

GJι,ι′ =
∫ T

0
ψι(Xt)ψι′(Xt) dt, ι, ι′ = 1, . . . , 2J − 1.

ΓJ and GJ have the same sparsity pattern
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Conjugate posterior

For fix level J ,

ZJ | J,X ∼ N (ΣJµJ ,ΣJ)

where ΣJ = (ΓJ +GJ)−1.
On J a reversible jump algorithm can be used.
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Posterior contraction rates (periodic case)

Besov norm, supremum norm for f =
∑∑

zj,kψj,k

‖f‖α = sup
j≥1,k

2(j−1)α|zj,k| ‖f‖∞ ≤
∑
j

max
k
|zj,k|

Sieves

BL,M =


L∑
j=1

2j−1−1∑
k=0

zj,kψj,k : 2α(j−1)|zj,k| ≤M, j, k = . . .


Rate

T
− β

1+2β log(T )
β

1+2β β ≥ α
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Anderson’s lemma

If X ∼ N(0,ΣX) and Y ∼ N(0,ΣY ) independent with
ΣX ≤pd ΣY positive definite, then then for all symmetric
convex sets P (Y ∈ C) ≤ P (X ∈ C).
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Summary

I Midpoint displacement construction of Gauss-Markov
processes

I Corresponding Gaussian Markov random field

I Chordal graphs and perfect elimination orderings

I Sparse Cholesky decomposition

I Rates for randomly truncated prior
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Image sources

[1] http://math.stackexchange.com/questions/251856
/area-enclosed-by-2-dimensional-random-curve
[2] http://kartoweb.itc.nl/geometrics/
reference%20surfaces/body.htm
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