Exact Bayesian inference for off-line change-point detection in tree-structured graphical models

Loïc Schwaller Statistics for Structures Seminar

March 17, 2017

- 1. Choose an order.
- 2. First player

- 1. Choose an order.
- 2. First player

- 1. Choose an order.
- 2. First player

- 1. Choose an order.
- 2. First player

- 1. Choose an order.
- 2. First player

- 3. Repeat 2 for some time.
- 4. Change order.
- 5. Repeat 2 for some time.

- 3. Repeat 2 for some time.
- 4. Change order.
- 5. Repeat 2 for some time.

- 3. Repeat 2 for some time.
- 4. Change order.
- 5. Repeat 2 for some time.

- 3. Repeat 2 for some time.
- 4. Change order.
- 5. Repeat 2 for some time.

- 3. Repeat 2 for some time.
- 4. Change order.
- 5. Repeat 2 for some time.

- Expression levels of 11 genes involved in wing muscle development
- ▶ 67 time-points

¹Arbeitman et al. 2002.

Exact Bayesian Inference in Graphical Models Using Trees

- Expression levels of 11 genes involved in wing muscle development
- ▶ 67 time-points

Exact Bayesian Inference in Graphical Models Using Trees

¹Arbeitman et al. 2002.

► Bayesian inference

Exact inference

Bayesian inference

Requirement

- Providing a full probabilistic construction
 - Prior distributions
- Exact inference

Bayesian inference

Requirement

- Providing a full probabilistic construction
 - Prior distributions
- Exact inference

- ▷ Graphical models
 - Markov property
 - hyper Markov property

Tool

Bayesian inference

Requirement

- Providing a full probabilistic construction
 - Prior distributions

- ▷ Graphical models
 - Markov property
 - hyper Markov property

Tool

Exact inference

Requirement

- Dealing with the combinatorial issue
 - $\binom{N-1}{K-1}$ segmentations
 - $2^{p(p-1)/2}$ undirected graphs

Bayesian inference	
Requirement	Tool
 Providing a full probabilistic construction Prior distributions 	 Graphical models Markov property hyper Markov property
• Exact inference	
Requirement	Tool

- Dealing with the combinatorial issue
 - $\binom{N-1}{K-1}$ segmentations
 - $2^{p(p-1)/2}$ undirected graphs

- ▷ Algebraic results
 - Segmentations
 - Spanning trees (Meilă and Jaakkola 2007)

Outline

Introduction Graphical models

Graphical models

$$p(\mathbf{\mathring{+}}, \mathbf{\mathring{+}}, \mathbf{\mathring{+}}) = p(\mathbf{\mathring{+}})p(\mathbf{\mathring{+}}|\mathbf{\mathring{+}})p(\mathbf{\mathring{+}}|\mathbf{\mathring{+}})p(\mathbf{\mathring{+}}|\mathbf{\mathring{+}})$$

Graphical models

 Graphical models extend this reasoning to arbitrary dependence structures.

Graphical models

 Graphical models extend this reasoning to arbitrary dependence structures.

Directed Acyclic Graphs

Undirected Graphs

Undirected graphs

- ► **V** = {1, ..., *p*}
- $\mathcal{P}_2(V)$ = subsets of V of size 2

Definition

For $E \subseteq \mathcal{P}_2(V)$, $G = (V, E_G)$ is the undirected graph with **vertices** V and **edges** E_G .

Undirected graphs

- ▶ **V** = {1, ..., p}
- $\mathcal{P}_2(V)$ = subsets of V of size 2

Definition

For $E \subseteq \mathcal{P}_2(V)$, $G = (V, E_G)$ is the undirected graph with vertices V and edges E_G .

Definition

A clique is a fully connected subsets of vertices.

Exact Bayesian Inference in Graphical Models Using Trees

Graph decomposition

- $G = (V, E_G)$
- $A, B \subseteq V$

Definition

(A, B) is a **decomposition** of G if

- $A \cup B = V$
- $A \cap B$ is a clique
- $A \cap B$ separates A from B

Markov property

► $Y = (Y_1, ..., Y_p)$ a random vector taking values in $\mathcal{Y} = \bigotimes_{i=1}^p \mathcal{Y}_i$

•
$$Y_A := (Y_\alpha)_{\alpha \in A}, A \subseteq V$$

Definition

A distribution π for Y is **Markov** w.r.t. G, if for all decompositions (A, B) of G,

 $Y_A \perp\!\!\!\perp Y_B | Y_{A \cap B}$

 $\mathfrak{M}_{G} = \{ \text{distributions } \pi \text{ Markov w.r.t. } G \}$

Factorisation

- ► $Y = (Y_1, ..., Y_p)$ a random vector taking values in $\mathcal{Y} = \bigotimes_{i=1}^p \mathcal{Y}_i$
- $Y_A := (Y_\alpha)_{\alpha \in A}, A \subseteq V$
- $Y \sim \pi$ with positive density

Proposition

$$(\pi \text{ Markov w.r.t. } G) \Leftrightarrow (\pi(Y) = \prod_{C \in C_G} \psi_C(Y_C))$$

C_G maximal cliques of G

Graphical models (formally)

Definition (Graphical Model)

An undirected graphical model is a couple (G, \mathcal{F}_G) where

- ▶ G is an undirected graph,
- $\mathcal{F}_G \subseteq \mathfrak{M}_G$ is a family of distributions Markov w.r.t. G.

Graphical models (formally)

Definition (Graphical Model)

An undirected graphical model is a couple (G, \mathcal{F}_G) where

- ▶ G is an undirected graph,
- $\mathcal{F}_G \subseteq \mathfrak{M}_G$ is a family of distributions Markov w.r.t. G.

Bayesian inference

- Some Markov property for ρ

Strong hyper Markov property

- (G, \mathcal{F}_G) graphical model
- ρ hyperdistribution on \mathcal{F}_{G}
- $\pi \sim \rho$

Definition

 ρ is said to be **strong hyper Markov** w.r.t. *G* if, for any decomposition (*A*, *B*) of *G*,

 $\pi_A \perp \!\!\!\perp \pi_{B|A}.$

Strong hyper Markov property

- (G, \mathcal{F}_G) graphical model
- ρ hyperdistribution on \mathcal{F}_{G}
- $\pi \sim \rho$

Proposition (Dawid and Lauritzen 1993)

If ρ is strong hyper Markov w.r.t. G, then the marginal likelihood

$$p(Y) = \int \pi(Y) \rho(\pi) d\pi$$

is Markov w.r.t. to G.

Strong hyper Markov property

- (G, \mathcal{F}_G) graphical model
- ρ hyperdistribution on \mathcal{F}_{G}
- $\pi \sim \rho$

Proposition (Dawid and Lauritzen 1993)

If ρ is strong hyper Markov w.r.t. G, then the marginal likelihood

 $p(Y) = \int \pi(Y) \rho(\pi) d\pi$

is Markov w.r.t. to G.

Compatible family

- ρ strong hyper Markov w.r.t. to the **complete graph**
- ► G graph

Proposition (Dawid and Lauritzen 1993)

There exists a unique hyperdistribution ρ^{G} on \mathfrak{M}_{G} that is strong hyper Markov w.r.t. G and s.t.

$$\forall C \in C_G, \ \rho_C^G = \rho_C.$$

- ρ_C hyperdistribution induced by ρ on π_C
- C_G maximal cliques of G

Compatible family

- $\mathcal{G} = \{G_1, \ldots, G_u\}$ graph family
- ρ strong hyper Markov w.r.t. to the complete graph

Definition

The **compatible family** built on \mathcal{G} from ρ is given by $\{\rho^G\}_{G \in \mathcal{G}}$

$$C \in C_{G_i} \cap C_{G_j}$$

$$\underbrace{\int \pi_C(Y_C)\rho_C^{G_i}(\pi_C)d\pi_C}_{p(Y_C|G_i)} = \underbrace{\int \pi_C(Y_C)\rho_C^{G_j}(\pi_C)d\pi_C}_{p(Y_C|G_j)}$$
In practice

• ρ given by a **parametric distribution**

Y	π	ρ
$R^{ ho}$	Normal	(Normal-)Wishart Geiger and Heckerman 2002
$\{1,\ldots,r\}^p$	Multinomial	Dirichlet Dawid and Lauritzen 1993
[0; 1] ^p	Copula	Depends on the copula Schwaller et al. 2015

Introduction
Algebraic magic bag

Algebraic tricks

ΣΠ

- Computing sum-products
 - For spanning trees
 - For segmentations

Spanning Trees

Definition

A spanning tree is a connected graph with no cycles.

$$\mathcal{T} := \left\{ T = (V, E_T) \text{ spanning tree on } V \right\}$$

$$|\mathcal{T}| = p^{p-2}$$

$$Maximal cliques = edges$$

Summing over \mathcal{T}

Theorem (Matrix-Tree, Kirchhoff 1847, Cayley 1889)

$$\Delta_{ij} = \begin{cases} -b_{ij} & \text{if } i \neq j \\ \sum_{k} b_{kj} & \text{if } i = j \end{cases}$$

All cofactors of Δ are equal to Z(b).

Complexity = $O(p^3)$

Segmentations

Definition

A segmentation of [[1; N]] is a partition of [[1; N]] into sets of consecutive elements called segments.

Summing over $\mathcal{M}_{\mathcal{K}}$

Proposition (Rigaill et al. 2012)

 $C_K(a) = [a^K]_{1,N+1}$

_	_	$\mathbf{Complexity} = O(KN^2)$															_				 1																															
1		Complexity $= O(V(N^2))$																				i.																														
ι.																	L	О	n	n	p		e	х	It	Ξ¥		=		υ	7(r	()	V	-)																ĩ
L.			_	_	_	_	_						_	_	_	_	_	_	_		•	_	_			-	_	_	_		_ 1	<u>`</u>	_	_	_	´_	 	 _	_	_	_	_	_	_	 	_	_	_	_	_	_	 2

Model & Inference

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

• $Y = \{Y^t\}_{t=1}^N$ multivariate random process of dimension p

$$\mathbf{Y}^{\mathsf{t}} \qquad \mathbf{Y}^{\mathsf{t}_{s,s,l}}$$

$$\mathbf{Y}_{2} \qquad \mathcal{N}_{1} \qquad \mathcal{N}_{2} \qquad \mathcal{N}_{1} \qquad \mathcal{N}_{2} \qquad \mathcal{N}_{2} \qquad \mathcal{N}_{1} \qquad \mathcal{N}_{2} \qquad \mathcal{N}_{$$

Model

Model

Inference

Marginal likelihood

$$p(Y|K) = \sum_{m \in \mathcal{M}_K} \sum_{\mathbf{T} \in \mathcal{T}^K} \int p(Y, \Pi, \mathbf{T}, m|K) d\Pi$$

$$|\mathcal{M}_{K}| \cdot |\mathcal{T}^{K}| = \binom{N-1}{K-1} \cdot p^{K(p-2)} \approx \left(\frac{Np^{p-2}}{K}\right)^{K}$$

ExampleN = 200 $|\mathcal{M}_4| \approx 1.3 \cdot 10^6$ p = 10 $|\mathcal{T}| = 10^8$

A complexity result

Proposition (Schwaller and Robin 2016)

Under some assumptions on prior distributions, the marginal likelihood p(Y|K) can be computed in $O(\max(K, p^3)N^2)$ time from locally integrated quantities on Π .

Prior distributions

"Under some assumptions on prior distributions"
'
• On segmentations m
• On trees $T = (T_1, \dots, T_K)$
• On distributions $\Pi = (\pi_1,, \pi_K)$

Prior distribution on m

$$p(m|\mathcal{K}) = \frac{1}{C_{\mathcal{K}}(a)} \prod_{[s;t] \in m} a_{st}$$

$$C_{\mathcal{K}}(a) = \sum_{m \in \mathcal{M}_{\mathcal{K}}} \prod_{[s;t] \in m} a_{st}$$

Prior distribution on m

$$p(Y|K) = \sum_{m} p(m|K)p(Y|m) = \frac{1}{C_{\mathcal{K}}(a)} \sum_{m} p(Y|m) \prod_{[s;t] \in m} a_{st}$$

Prior distribution on m

$$p(Y|K) = \sum_{m} p(m|K)p(Y|m) = \frac{1}{C_{K}(a)} \underbrace{\sum_{m} p(Y|m) \prod_{[s;t] \in m} a_{st}}_{C_{K}(A)}$$

Factorising p(Y|m)

$$p(Y|m) = \sum_{\mathbf{T}\in\mathcal{T}^{K}} \int \underbrace{p(Y,\Pi,\mathbf{T}|m)}_{p(\mathbf{T})p(\Pi|\mathbf{T})p(Y|\Pi,m)} d\Pi$$

$$= \sum_{\mathbf{T}\in\mathcal{T}^{K}}\prod_{k}p(T_{k})\int\prod_{k}p(Y^{r_{k}}|\pi_{k})\prod_{k}p(\pi_{k}|T_{k})d\pi_{k}$$

$$=\prod_{k}\underbrace{\sum_{T\in\mathcal{T}}p(T)\int p(Y^{r_{k}}|\pi_{k})p(\pi_{k}|T)d\pi_{k}}_{(M_{k})}$$

 $p(Y^{r_k}) =$ marginal likelihood on r_k

Integrating on m

Integrating on m

$$p(m) = \frac{1}{C_{\mathcal{K}}(a)} \prod_{[s;t] \in m} a_{st}$$

$$p(Y|K) = \frac{1}{C_{K}(a)} \sum_{m \in \mathcal{M}_{K}} \prod_{\llbracket s; t \rrbracket \in m} a_{st} \cdot p(Y^{\llbracket s; t \rrbracket})$$

Integrating on m

Marginal likelihood on a segment

$$p(Y^r) = \sum_{T \in \mathcal{T}} p(T) \int p(Y^r | \pi) p(\pi | T) d\pi$$

Prior distribution on T

-		-	-		-	-		-	-			-		-	-		-	-	-	-
5	-								=											
Ξ.		-							-	-										
		-	-			=	=		-	-	-					=	=	=	=	
=			-	-	Ξ	Ξ	=		=	-	-	-		Ξ	Ξ	=	=	=	=	
=	=		Ξ	-	-	Ξ	=		=	=	=	=	=	Ξ	Ξ	Ξ	=	=	=	
=	=		Ξ	=			Ξ	=	=	=	=	=	=	Ξ	Ξ	Ξ	=	=	=	÷
=	=		Ξ	=	Ξ			Ξ	=	=	=	=	=	Ξ	Ξ	Ξ	=	=	=	ï
	=		Ξ		Ξ	Ξ	-		÷	-	-		=	Ξ	Ξ	Ξ	=	=	=	ī
	F		Ξ		Ξ	Ξ	=	-		=	-			Ξ	Ξ	Ξ	=	=	=	ī
	Ē		Ξ		Ē	i	Ē	Ē	÷		Ē			Ξ	ī	ī	Ē	Ē	Ē	
	Ē		Ē		Ē	Ē	Ē	Ē	Ē	Ì.				Ē	Ē	Ē		Ē	Ē	
			Ē		Ē	i		Ē	Ē				Ē	Ē	Ē	i		Ē	Ē	ī
			Ē		iii	iii		×	Ē			i III		Ē	i	iii				i
	=	=	=		m	m			×						m	m	m			i
	=		=						×								m			
	ш		=		=	ш		=					100	=	Ш		m		=	
	71				Ш	Ш								ш	Ш	Ш				
					Ш	Ш								ш	Ш	Ш				
8																Ш				
Ξ.																				

$$p(T) = \frac{1}{Z(b)} \prod_{\{i,j\} \in E_T} b_{ij}$$

$$Z(b) = \sum_{T \in \mathcal{T}} \prod_{\{i,j\} \in E_T} b_{ij}$$

Prior distribution on T

			0.001
			41 11 1
	-		
			0.001
11 M H H	 		41.011
10.00			
- Geo 11	 		
			- L
L C (III			anii -

$$p(T) = \frac{1}{Z(b)} \prod_{\{i,j\} \in E_T} b_{ij}$$

$$p(Y^r) = \frac{1}{Z(b)} \sum_{T \in \mathcal{T}} \int p(Y^r | \pi) p(\pi | T) d\pi \prod_{\{i, j\} \in E_T} b_{ij}$$

Prior distribution on T

			0.001
			41 11 1
	-		
			0.001
11 M H H	 		40.000
10.00			
- Geo 11	 		
			- L
L C (III			anii -

$$p(T) = \frac{1}{Z(b)} \prod_{\{i,j\} \in E_T} b_{ij}$$

$$p(Y^r) = \frac{1}{Z(b)} \underbrace{\sum_{T \in \mathcal{T}} \int p(Y^r | \pi) p(\pi | T) d\pi \prod_{\{i, j\} \in E_T} b_{ij}}_{\propto Z(B)}$$

Prior distribution on π

- ρ strong hyper Markov w.r.t. to the complete graph
- $\{\rho^T\}_{T \in \mathcal{T}}$ compatible family built from ρ on \mathcal{T}

$$p(\pi|T) = \rho^{T}(\pi) \qquad \forall T \in \mathcal{T}$$

Prior distribution on π

 $\begin{array}{l} \bullet \quad \rho \quad \mbox{ strong hyper Markov w.r.t. to the complete graph} \\ \bullet \quad \{\rho^{T}\}_{T \in \mathcal{T}} \quad \mbox{ compatible family built from } \rho \mbox{ on } \mathcal{T} \end{array}$

$$p(\pi|T) = \rho^T(\pi) \qquad \forall T \in \mathcal{T}$$

$$p(Y^r|T) = \underbrace{\prod_i p(Y_i^r)}_{U^{(r)}} \prod_{\{i,j\}\in E_T} \frac{p(Y_i^r, Y_j)}{p(Y_i^r)p(Y_j^r)}$$

$$p(Y_i^r, Y_j^r) = \int \pi_{ij}(Y_i^r, Y_j^r) \rho_{ij}(\pi_{ij}) d\pi_{ij}$$
$$p(Y_i^r) = \int \pi_i(Y_i^r) \rho_i(\pi_i) d\pi_i$$

Integrating on T

() () () () () () () () () ()			
100 100 100	 		
E			
THE OWNER AND ADDRESS			
ing on the sec	 		
The second second			
,		e na ni ili i	
E 571E			
in my and	 		
All the state of t			

 $p(T) = \frac{1}{Z(b)} \prod_{\{i,j\} \in E_T} b_{ij}$

Integrating on T

()			
	10		
R.C. HILL			

 $p(T) = \frac{1}{Z(b)} \prod_{\{i,j\}\in F_T} b_{ij}$

 $p(Y^r) = \frac{1}{Z(b)} U^{(r)} \sum_{T \in \mathcal{T}} \prod_{\{i,i\} \in F_{\mathcal{T}}} b_{ij} \frac{p(Y_i^r, Y_j^r)}{p(Y_i^r) p(Y_i^r)}$

Integrating on T

1	Ξ	Ξ	Ш		Ш	Ш	H	1	н	н	Ξ	1			H	1	н	н	ī
=						ш													
=	=				=						=	=							=
=	=	-			=		=		-	=	-	=			=			-	-
=	=	-	-			=	=		=	=	=	=			=			-	=
	=	_	-		_		=		=		=	=			-				=
2	_	_				_			-		-								2
=	=	=					_	-	=		=	=							2
	=			=	=	=	=	-	-		=	=			=	=			=
	=			=	=	=	=		-	-	=	=			=	=			=
	Ξ	Ξ	Ξ	=	Ξ	8	=		=	-	-	Ξ			Ξ	=			=
=	=	=	Ξ	=	Ξ	Ξ	=		=		-	-	Ξ		Ξ	=			=
Ξ	=	=	Ξ	=	Ξ	Ξ	=	=	=	=	=			Ξ	Ξ	=	=	=	÷
Ξ	Ξ	Ξ	Ξ		ï	ï	ī	Ē	ī	Ξ	Ξ	Ξ	ì		Ξ	Ē	Ē	Ē	ī
E	=	Ē	Ē		Ē	Ē	Ē	Ē	Ē		Ξ	Ē		i		Ē	Ē	Ē	Ē
=	=	Ē	Ē		Ē	i		Ē	Ē	=	=	Ē					Ē	Ē	Ē
	1				iii	ii													
=	5	1																	
π		11				ш													
ь	hi	s		周	Ⅲ	Ⅲ					=					现			

$$p(T) = \frac{1}{Z(b)} \prod_{\{i,j\} \in E_T} b_{ij}$$

$$p(Y^r) = U^{(r)} \cdot \frac{Z(B^{(r)})}{Z(b)}$$

$$B_{ij}^{(r)} = b_{ij} \cdot \frac{p(Y_i^r, y_j^r)}{p(Y_i^r)p(Y_j^r)}$$

_																		- 1																																
																C	20	n	n	p	le	x	it	y	=	=	С)(p	3)																		1	
-			_	_	_				_	_	_	_	_	_	_		_	_	_		_	_	_	-	_	_	_	-`	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	
In a nutshell

In a nutshell

Proposition (Schwaller and Robin 2016)

Under some assumptions on prior distributions, the marginal likelihood p(Y|K) can be computed in $O(\max(K, p^3)N^2)$ time from locally integrated quantities on Π .

Other quantities

Posterior probability of events

{there is a change-point at time t}
{m contains segment [[s; t[]]}

Posterior distribution of K

$$p(K|Y) \propto \frac{p(K)[A^K]_{1,N+1}}{[a^K]_{1,N+1}}$$

_ _ _ _ _ _ _ _ _ _ _ .

Data generation

- ▶ *p* = 10 variables
- Time-series of size N = 70, 140 and 210
- Four segments of lengths $\frac{3}{7}N$, $\frac{1}{7}N$, $\frac{2}{7}N$

- Three structure scenarios
 - spanning trees
 - Erdös-Rényi, p_C = 2/p
 - Erdös-Rényi, p_C = 4/p
- For each sample size and structure series, 100 datasets with centered Gaussian observations were generated.

Inference

Tree model

Number of segments	K	$K \sim \mathcal{P}(4)$
Segmentation	т	$m \sim \mathcal{U}(\mathcal{M}_{\mathcal{K}})$
Trees	$\{T_k\}_{k=1}^K$ i.i.d.	$T_k \sim \mathcal{U}(\mathcal{T})$
Precision matrices	$\{\Lambda_r\}_{r\in m}$ ind.	$\Lambda_r \sim h \mathcal{W}(\alpha, \phi, T_{\kappa(r m)})$
Observations	$\{Y_t\}_{t=1}^N$ ind.	$Y^t \sim \mathcal{N}(0_p, \Lambda_r) \forall t \in r$

Inference

Full model _____

Number of segments	K	$K \sim \mathcal{P}(4)$
Segmentation	т	$m \sim \mathcal{U}(\mathcal{M}_K)$
Precision matrices	$\{\Lambda_r\}_{r\in m}$ i.i.d	$\Lambda_r \sim \mathcal{W}(\alpha, \phi)$
Observations	$\{Y_t\}_{t=1}^N$ ind.	$Y^t \sim \mathcal{N}(0_p, \Lambda_r) \forall t \in r$

Posterior probability of a change-point occurring at time t, integrated on K

ER, low density scenario

Posterior probability of a change-point occurring at time t, integrated on K

ER, high density scenario

Posterior probability of a change-point occurring at time t, integrated on K

Applications

▶ Expression levels of 11 genes involved in wing muscle development

- 5 segments selected by p(K|Y)
- Best segmentation found by Neighbourhood Search algorithm (Auger and Lawrence 1989)

10													
÷	6	2	Schwaller	η L.	(2015)	saturnin:	SpAnning	Trees	Used	foR	Network	InfereNce	i i
1	https://cran.r-project.org/web/packages/saturnin/								1.1				
н.		- L				1 5		1 (5				

fMRI Data²

- Averaged blood flow of 5 regions
- 20 participants
- 215 images at 2s intervals

²Cribben et al. 2012.

fMRI data³

³Cribben et al. 2012.

Extensions

Covariates

- ▷ Easy to take into account in a Gaussian setting
- ▷ Not so much generally

Extensions

- Temporal dependence
 - ▷ Within segments
 - ▶ Based on Temporal Interaction Models (Siracusa 2009)

Conclusion & Perspectives

Conclusion & Perspectives

Problem at hand					
 Segmentation of the dependence structure in a multivariate time-series 					
So far					
• Exact & Bayesian inference in $O(\max(p^3, K)N^2)$ time					
Using algebraic results on					
Spanning Trees					
 Segmentations 					
Using (hyper) Markov properties					
Perspectives					
► Numerical issues					
► R package					

References

⊨	Michelle N Arbeitman Fileen F M Furlong Farhad Imam Fric Johnson Brian
	H Null, Bruce S Baker, Mark a Krasnow, Matthew P Scott, Ronald W Davis,
	and Kevin P White (2002) "Gene expression during the life cycle of Drosophila melanogaster." <i>Science (New York, N.Y.)</i> 297,5590
E	Ivor Cribben Ragnheidur Haraldsdottir Lauren Y. Atlas, Tor D. Wager, and Martin
	 a. Lindquist (2012) "Dynamic connectivity" regression: Determining state-related changes in brain connectivity" <i>NeuroImage</i> 61.4
€	A. Dawid and S. Lauritzen (1993) "Hyper Markov Laws in the Statistical Analysis of Decomposable Graphical Models" <i>The Annals of Statistics</i> 21.3
€	Marina Meilă and Tommi Jaakkola (2007) "Tractable Bayesian learning of tree belief
	networks." Statistics and Computing 16.1
E	G. Rigaill, E. Lebarbier, and S. Robin (2012) "Exact posterior distributions and model selection criteria for multiple change-point detection problems" <i>Statistics and Computing</i> 22.4
ſ	L Schwoller and S. Pohin (2016) "Evact Bayerian inference for off line change point
	detection in tree-structured graphical models" <i>Statistics and Computing</i>
	L. Schwaller, S. Robin, and M. Stumpf (2015) "Bayesian Inference of Graphical Model Structures Using Trees" arXiv e-prints

_ _ _ _ _ _ _