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Let’s play a game...

New rules

3. Repeat 2 for some time.

4. Change order.

5. Repeat 2 for some time.
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Löıc Schwaller Exact Bayesian Inference in Graphical Models Using Trees 2/46



Let’s play a game...

New rules

3. Repeat 2 for some time.

4. Change order.

5. Repeat 2 for some time.

Segmentation
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Let’s play a game...

New rules

3. Repeat 2 for some time.

4. Change order.

5. Repeat 2 for some time.

Change-point detection
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Drosophila life cycle microarray data1

I Expression levels of 11 genes involved in wing muscle development

I 67 time-points
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Löıc Schwaller Exact Bayesian Inference in Graphical Models Using Trees 3/46



Exact Bayesian inference

I Bayesian inference

Requirement

B Providing a full probabilistic
construction

I Prior distributions

Tool

B Graphical models
I Markov property
I hyper Markov property

I Exact inference

Requirement

B Dealing with the combinatorial
issue

I
(
N−1
K−1

)
segmentations

I 2p(p−1)/2 undirected graphs

Tool

B Algebraic results
I Segmentations
I Spanning trees

(Meilă and Jaakkola 2007)
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Outline

B Introduction
I Graphical models
I Algebraic results

B Model & Inference

B Simulations

B Applications
I Drosophila life cycle

microarray data
I fMRI data

B Extensions & Conclusion



Introduction

Graphical models



Graphical models

I is a Markov chain.

p( , , , ) = p( )p( | )p( | )p( | )

I Graphical models extend this reasoning to arbitrary dependence
structures.

Directed Acyclic Graphs
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Undirected graphs

I V = {1, ..., p}

I P2(V ) = subsets of V of size 2
4

2

3

1

5

6

7

Definition

For E ⊆ P2(V ), G = (V ,EG ) is the undirected graph with vertices V
and edges EG .

Definition

A clique is a fully connected subsets of vertices.
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Graph decomposition

I G = (V ,EG )
I A,B ⊆ V

Definition

(A,B ) is a decomposition of G if

I A ∪ B = V

I A ∩ B is a clique

I A ∩ B separates A from B

A

B
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Markov property

I Y = (Y1, ...,Yp) a random vector
taking values in Y =

⊗p
i=1Yi

I YA
..= (Yα)α∈A, A ⊆ V

A

B

Definition

A distribution π for Y is Markov w.r.t. G , if for all decompositions
(A,B ) of G ,

YA |= YB |YA∩B

MG = {distributions π Markov w.r.t. G }
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Factorisation

I Y = (Y1, ...,Yp) a random vector
taking values in Y =

⊗p
i=1Yi

I YA
..= (Yα)α∈A, A ⊆ V

I Y ∼ π with positive density

Proposition(
π Markov w.r.t. G

)
⇔

(
π(Y ) =

∏
C ∈CG

ψC (YC )
)

I CG maximal cliques of G

Example
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Graphical models (formally)

Definition (Graphical Model)

An undirected graphical model is a couple (G, FG ) where

I G is an undirected graph,

I FG ⊆ MG is a family of distributions Markov w.r.t. G .

Bayesian inference

ρ distribution on FG called hyperdistribution
π ∼ ρ

I Some Markov property for ρ
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Strong hyper Markov property

I (G, FG ) graphical model

I ρ hyperdistribution on FG
I π ∼ ρ

Definition

ρ is said to be strong hyper Markov w.r.t. G if, for any decomposition
(A,B ) of G ,

πA |= πB |A.

A

B
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Strong hyper Markov property

I (G, FG ) graphical model

I ρ hyperdistribution on FG
I π ∼ ρ

Proposition (Dawid and Lauritzen 1993)

If ρ is strong hyper Markov w.r.t. G , then the marginal likelihood

p(Y ) =
∫

π(Y )ρ(π)dπ

is Markov w.r.t. to G.

p(Y ) =
∏
C ∈CG

ψC (YC )︸   ︷︷   ︸
locally integrated
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Compatible family

I ρ strong hyper Markov w.r.t. to the complete graph

I G graph

Proposition (Dawid and Lauritzen 1993)

There exists a unique hyperdistribution ρG on MG that is strong
hyper Markov w.r.t. G and s.t.

∀C ∈ CG , ρ
G
C = ρC .

I ρC hyperdistribution induced by ρ on πC

I CG maximal cliques of G
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Compatible family

I G = {G1, . . . ,Gu } graph family

I ρ strong hyper Markov w.r.t. to the complete graph

Definition

The compatible family built on G from ρ is given by {ρG }G ∈G

C ∈ CGi ∩ CGj∫
πC (YC )ρGi

C
(πC )dπC︸                         ︷︷                         ︸

p(YC |Gi )

=

∫
πC (YC )ρGj

C
(πC )dπC︸                          ︷︷                          ︸

p(YC |Gj )
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In practice

I ρ given by a parametric distribution

Y π ρ

Rp Normal (Normal-)Wishart
Geiger and Heckerman 2002

{1, . . . , r }p Multinomial Dirichlet
Dawid and Lauritzen 1993

[0; 1]p Copula Depends on the copula
Schwaller et al. 2015
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Introduction

Algebraic magic bag



Algebraic tricks

∑∏
I Computing sum-products

I For spanning trees
I For segmentations
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Spanning Trees

Definition

A spanning tree is a connected graph with no cycles.

B T ..=
{
T = (V ,ET ) spanning tree on V

}

B |T | = pp−2

B Maximal cliques = edges
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Summing over T

b

Z (b) =
∑
T ∈T

∏
{i,j }∈ET

bij

Theorem (Matrix-Tree, Kirchhoff 1847, Cayley 1889)

∆ij =




−bij if i , j∑
k

bkj if i = j

All cofactors of ∆ are equal to Z (b).

Complexity = O (p3)
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Segmentations

Definition

A segmentation of ~1;N� is a partition of ~1;N� into sets of
consecutive elements called segments.

I m = (~τk−1; τk~)Kk=1 = (rk )Kk=1

I 1 = τ0 < τ1 < . . . < τK−1 < τK = N + 1 change-points of m
I r1, . . . , rK segments of m

B MK = { segmentations of ~1;N� into K segments }

B |MK | =
(
N−1
K−1

)
τ0 τ1 τk−2 τk−1 τk τk+1 τK−1 τK

r1 . . . rk−1 rk rk+1 . . . rK
1 N + 1
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Summing over MK

a

CK (a) =
∑

m∈MK

∏
~s;t~∈m

ast

Proposition (Rigaill et al. 2012)

CK (a) = [aK ]1,N+1

Complexity = O (KN2)
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Model & Inference



A segmentation problem

I Y = {Y t }Nt=1 multivariate random process of dimension p
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A segmentation problem

Y1

Y2

Y4

Y3

Y5

Y6

Y7

Y8

Y t
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A segmentation problem
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A segmentation problem
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Model

. . . rk−1 rk rk+1 . . .

. . .

Tk−1 Tk Tk+1

. . .

p(T|K ) =
∏
k

p(Tk ) T = (T1, . . . ,TK )

. . . πk−1
Markov w.r.t. Tk−1

πk
Markov w.r.t. Tk

πk+1
Markov w.r.t. Tk+1

. . .

p(Π |T) =
∏
k

p(πk |Tk ) Π = (π1, . . . , πK )

. . . Y rk−1
i.i.d.
∼ πk−1 Y rk i.i.d.

∼ πk Y rk+1
i.i.d.
∼ πk+1

. . .

p(Y |m, π) =
∏
k

∏
t∈rk

p(Y t |Tk, πk )
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Inference

I Marginal likelihood

p(Y |K ) =
∑

m∈MK

∑
T∈T K

∫
p(Y ,Π,T,m|K )dΠ

|MK | · |T
K | =

(
N − 1

K − 1

)
· pK (p−2) ≈

(
Npp−2

K

)K
Example

N = 200 |M4 | ≈ 1.3 · 106

p = 10 |T | = 108
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A complexity result

Proposition (Schwaller and Robin 2016)

Under some assumptions on prior distributions, the marginal likelihood
p(Y |K ) can be computed in O (max(K, p3)N2) time from locally
integrated quantities on Π.
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Prior distributions

“Under some assumptions on prior distributions”

I On segmentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m

I On trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T = (T1, . . . ,TK )

I On distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Π = (π1, . . . , πK )
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Prior distribution on m

a

p(m|K ) =
1

CK (a)

∏
~s;t~∈m

ast

CK (a) =
∑

m∈MK

∏
~s;t~∈m

ast

Example

τ0 τ1 τ2 τ3 τ4

r1 r2 r3 r4
1 5 15 19 26

p(m|K ) =
1

CK (a)
a1,5a5,15a15,19a19,26
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Prior distribution on m

a

p(m|K ) =
1

CK (a)

∏
~s;t~∈m

ast

p(Y |K ) =
∑
m

p(m|K )p(Y |m) =
1

CK (a)

∑
m

p(Y |m)
∏
~s;t~∈m

ast︸                       ︷︷                       ︸
CK (A)
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Factorising p(Y |m)

p(Y |m) =
∑

T∈T K

∫
p(Y ,Π,T|m)︸           ︷︷           ︸

p(T)p(Π |T)p(Y |Π,m)

dΠ

=
∑

T∈T K

∏
k

p(Tk )
∫ ∏

k

p(Y rk |πk )
∏
k

p(πk |Tk )dπk

=
∏
k

∑
T ∈T

p(T )
∫

p(Y rk |πk )p(πk |T )dπk︸                                           ︷︷                                           ︸
p(Y rk ) = marginal likelihood on rk
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Integrating on m

a

p(m) =
1

CK (a)

∏
~s;t~∈m

ast

Ast = ast · p(Y ~s;t~)

Complexity = O (KN2)
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Integrating on m

a

p(m) =
1

CK (a)

∏
~s;t~∈m

ast

A

p(Y |K ) =
CK (A)
CK (a)

Ast = ast · p(Y ~s;t~)

Complexity = O (KN2)
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Marginal likelihood on a segment

p(Y r ) =
∑
T ∈T

p(T )
∫

p(Y r |π)p(π |T )dπ

r

r

T

π Markov w.r.t. T
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Prior distribution on T

b

p(T ) =
1

Z (b)

∏
{i,j }∈ET

bij

Z (b) =
∑
T ∈T

∏
{i,j }∈ET

bij

Example

5

21

3

7 p(T ) =
1

Z (b)
b12b25b35b57
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Prior distribution on T

b

p(T ) =
1

Z (b)

∏
{i,j }∈ET

bij

p(Y r ) =
1

Z (b)

∑
T ∈T

∫
p(Y r |π)p(π |T )dπ

∏
{i,j }∈ET

bij︸                                            ︷︷                                            ︸
∝ Z (B )
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Prior distribution on T

b

p(T ) =
1

Z (b)

∏
{i,j }∈ET

bij

p(Y r ) =
1

Z (b)
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T ∈T

∫
p(Y r |π)p(π |T )dπ

∏
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Prior distribution on π

I ρ strong hyper Markov w.r.t. to the complete graph

I {ρT }T ∈T compatible family built from ρ on T

p(π |T ) = ρT (π) ∀T ∈ T

p(Y r |T ) =
∏
i

p(Y r
i )︸      ︷︷      ︸

U (r )

∏
{i,j }∈ET

p(Y r
i ,Yj )

p(Y r
i

)p(Y r
j

)

p(Y r
i ,Y

r
j ) =

∫
πij (Y

r
i ,Y

r
j )ρij (πij )dπij

p(Y r
i ) =

∫
πi (Y

r
i )ρi (πi )dπi
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Integrating on T

b

p(T ) =
1

Z (b)

∏
{i,j }∈ET

bij

B (r )
ij
= bij ·

p(Y r
i , y

r
j )

p(Y r
i

)p(Y r
j

)

Complexity = O (p3)
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Integrating on T

b

p(T ) =
1

Z (b)

∏
{i,j }∈ET

bij

B(r)

p(Y r ) = U (r ) ·
Z (B (r ))
Z (b)

B (r )
ij
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p(Y r
i , y

r
j )

p(Y r
i

)p(Y r
j

)
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In a nutshell

O(N2K)

b

B

s;tB p(Y )s;t

p(Y )1;2

a

A

1;N+1B p(Y )1;N+1

p(Y|K)

O(N2p3)
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In a nutshell

Proposition (Schwaller and Robin 2016)

Under some assumptions on prior distributions, the marginal likelihood
p(Y |K ) can be computed in O (max(K, p3)N2) time from locally
integrated quantities on Π.
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Other quantities

I Posterior probability of events

{there is a change-point at time t}
{m contains segment ~s; t~}

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Time

I Posterior distribution of K

p(K |Y ) ∝
p(K )[AK ]1,N+1

[aK ]1,N+1
0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10
K

p(
K
|Y
)

Complexity = O (max(p3,K )N2)
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Simulations



Data generation

I p = 10 variables

I Time-series of size N = 70, 140 and 210

I Four segments of lengths 3
7N, 1

7N, 2
7N

30 10 20 10

60 20 40 20

90 30 60 30

1 Nτ1 τ2 τ3

N=70

N=140

N=210

I Three structure scenarios
I spanning trees
I Erdös-Rényi, pC = 2/p
I Erdös-Rényi, pC = 4/p

I For each sample size and structure series, 100 datasets with centered
Gaussian observations were generated.
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Inference

Tree model

Number of
segments K K ∼ P (4)

Segmentation m m ∼ U (MK )

Trees {Tk }
K
k=1 i.i.d. Tk ∼ U (T )

Precision
matrices {Λr }r ∈m ind. Λr ∼ hW (α, φ,Tκ (r |m))

Observations {Yt }
N
t=1 ind. Y t ∼ N (0p,Λr ) ∀t ∈ r
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Inference

Full model

Number of
segments K K ∼ P (4)

Segmentation m m ∼ U (MK )
Precision
matrices {Λr }r ∈m i.i.d Λr ∼ W (α, φ)

Observations {Yt }
N
t=1 ind. Y t ∼ N (0p,Λr ) ∀t ∈ r
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Results

Tree scenario
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Results

ER, low density scenario
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Results

ER, high density scenario
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Results

Tree

Full Tree
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K̂ = arg max
K

p(K |y )

K (m̂) = K

(
arg max

m
p(m|y )

)
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Applications



Drosophila life cycle microarray data

I Expression levels of 11 genes involved in wing muscle development
I 67 time-points

Embryo Larva Pupa Adult
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Drosophila life cycle microarray data

I 5 segments selected by p(K |Y )
I Best segmentation found by Neighbourhood Search algorithm

(Auger and Lawrence 1989)
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Schwaller L. (2015) saturnin: SpAnning Trees Used foR Network InfereNce

https://cran.r-project.org/web/packages/saturnin/
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fMRI Data2

I Averaged blood flow of 5 regions

I 20 participants

I 215 images at 2s intervals
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2Cribben et al. 2012.
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fMRI data3

p∗α (y r ) =
∑
T ∈T

U∏
u=1



∫ ∏
t∈r

p(y t,u |θu)p(θu |T )dθu

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3Cribben et al. 2012.
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Extensions

I Covariates
B Easy to take into account in a Gaussian setting
B Not so much generally

I Application to microbial ecology
using a copula-based pragmatical approach

B Learning direct interactions between species
B Taking environmental covariates into account

B. Jakuschkin et al. (2016) “Deciphering the pathobiome: intra- and interkingdom
interactions involving the pathogen Erysiphe alphitoides”Microbial Ecology
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Extensions

I Temporal dependence
B Within segments
B Based on Temporal Interaction Models (Siracusa 2009)

Y t−1 Y t Y t+1

Y t−1
2

Y t−1
1

Y t−1
3

Y t
1

Y t
2

Y t
3

Y t+1
1

Y t+1
2

Y t+1
3

Y2

Y1

Y3

Löıc Schwaller Exact Bayesian Inference in Graphical Models Using Trees 45/46



Conclusion & Perspectives



Conclusion & Perspectives

Problem at hand

I Segmentation of the dependence structure in a multivariate
time-series

So far

I Exact & Bayesian inference in O(max(p3,K )N2) time

I Using algebraic results on
I Spanning Trees
I Segmentations

I Using (hyper) Markov properties

Perspectives

I Numerical issues

I R package
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