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4=  Drosophila life cycle microarray datal
—e

> Expression levels of 11 genes involved in wing muscle development

> 67 time-points
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\ Requirement ' Tool |
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> Providing a full probabilistic > Graphical models
construction » Markov property
> Prior distributions > hyper Markov property

» Exact inference

| Requirement i Tool w
I o o o o o e e e e e e Il o |
> Dealing with the combinatorial > Algebraic results
issue > Segmentations
> (%j) segmentations > Spanning trees
» 2P(P=1)/2 yndirected graphs (Meil3 and Jaakkola 2007)
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Graphical models

> _>*_> _Ui\ is a Markov chain.

p(A, T, A = pCHPEIHPCHIE) PRI )
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Graphical models

> H*H H* is a Markov chain.

p(A, T, A = pCHPEIHPCHIE) PRI )

» Graphical models extend this reasoning to arbitrary dependence
structures.

Directed Acyclic Graphs Undirected Graphs
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& o ofjolo
C—) OO

Loic Schwaller Exact Bayesian Inference in Graphical Models Using Trees 5/46



Undirected graphs

@
sV ={1...p) . ©
> P>(V) = subsets of V of size 2 Q‘.@ Q
& ©
Definition

For E C P»(V), G = (V, Eg) is the undirected graph with vertices V
and edges Eg.
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Undirected graphs

@
sV ={1...p) . ©
> P>(V) = subsets of V of size 2 0‘.0 Q
& ©
Definition

For E C P»(V), G = (V, Eg) is the undirected graph with vertices V
and edges Eg.

Definition

A clique is a fully connected subsets of vertices.
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Graph decomposition

°
> G=(V,Eq)
» ABCV

Definition

(A, B) is a decomposition of G if
» AUB=V

» AN B is a clique

» AN B separates A from B
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Markov property

» Y =(Y1,...,Y,) a random vector
taking values in ¥ = @ | Y;

> Ya = (Yo)aea, ACV

A distribution 7 for Y is Markov w.r.t. G, if for all decompositions
(A B) of G,

YAl Yg|YanB

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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Factorisation
@

» Y =(Y1,...,Y,) a random vector
taking values in ¥ = @ | Y;

> Ya = (Yo)aea, ACV

» Y ~ 7 with positive density

(7r Markov w.r.t. G ) o (n(Y) = 1_[ vec(Ye) )

CECG
» Cc maximal cliques of G
Example
| @ ® @ ® l
! “ “ @ |
! a3 | @ D @ |
| % & < |
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Graphical models (formally)

Definition (Graphical Model)

An undirected graphical model is a couple (G, ¥5) where
» G is an undirected graph,
» Fc € Mg is a family of distributions Markov w.r.t. G.
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Graphical models (formally)

Definition (Graphical Model)

An undirected graphical model is a couple (G, ¥5) where
» G is an undirected graph,
» Fc € Mg is a family of distributions Markov w.r.t. G.

Bayesian inference

» Some Markov property for p
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Strong hyper Markov property

» (G, ¥F¢) graphical model
> p hyperdistribution on ¥¢

>ﬂ'~p

p is said to be strong hyper Markov w.r.t. G if, for any decomposition
(A B) of G,

Tallmp|A.
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Strong hyper Markov property

» (G, F¢) graphical model
> p hyperdistribution on ¥¢

>ﬂ'~p

Proposition (Dawid and Lauritzen 1993)

If p is strong hyper Markov w.r.t. G, then the marginal likelihood

p(Y) = f 7 (Y)p(x)dn

is Markov w.r.t. to G.
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» (G, F¢) graphical model
> p hyperdistribution on ¥¢

>ﬂ'~p

Proposition (Dawid and Lauritzen 1993)

If p is strong hyper Markov w.r.t. G, then the marginal likelihood

p(Y) = f 7 (Y)p(x)dn

is Markov w.r.t. to G.

i pO =[] wevo

CeC, Y
G locally integrated
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Compatible family

> p strong hyper Markov w.r.t. to the complete graph
» G graph

Proposition (Dawid and Lauritzen 1993)

There exists a unique hyperdistribution p© on Mg that is strong
hyper Markov w.r.t. G and s.t.

VC e Cq, pE = pc.

» pc hyperdistribution induced by p on m¢

» Cc maximal cliques of G

Loic Schwaller Exact Bayesian Inference in Graphical Models Using Trees 13/46



Compatible family

» G ={Gi....,G,} graph family
> p strong hyper Markov w.r.t. to the complete graph

The compatible family built on G from p is given by {p®}ccg
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In practice

> p given by a parametric distribution

Y Vs o)
B Normal R
{1’ Tt r}p Multinomial DawingiLfltli!zeeE 1993
[0: 117 Copula Depens o ihe copula

Loic Schwaller Exact Bayesian Inference in Graphical Models Using Trees 15/46



Introduction



Algebraic tricks

2 11

» Computing sum-products

> For spanning trees
> For segmentations
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Spanning Trees
L

A spanning tree is a connected graph with no cycles.

| > 7T = {T = (V, ET) spanning tree on V} |
LTI =P |
| > Maximal cliques = edges |
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Summing over 7~

| 2=, || b |

Theorem (Matrix-Tree, Kirchhoff 1847, Cayley 1889)

—bj ifi#j
Ajj = Zbkj ifi=j
k
All cofactors of A are equal to Z(b).

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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Segmentations
L

A segmentation of [1; N] is a partition of [1; N] into sets of

consecutive elements called segments.

Loic Schwaller

k-1 s Mk+1

Exact Bayesian Inference in Graphical Models Using Trees
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Summing over Mg

| Ck(a) = Z ]—[ ast

meMkg [s;tlem

Proposition (Rigaill et al. 2012)

Cr(a) = [a"]Lnn
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A segmentation problem
L

» Y = {Y'*}{)’=1 multivariate random process of dimension p

Yt YI[s,;s 1

v, AMWMWW
o AAIAATN o i A
Y| v M Ain o AR
v, JWW%WWM
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A segmentation problem
L

Yt-l Yt Yt+1 Yt+2

t1 t t+1 t+2
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Model

Fk—1 Ik rk+1
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Model

L
re—1 Ik Fk+1
Th-1 Tk - Tkn
° KT
o ©
p(TIK) = [ [p(Ti) T=(To....Tk)

k
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Model

L
k-1 Ik Fk+1
Tk-1 Ty - Tkn
° T
o ©
p(TIK) = [ [p(Ti) T=(Ty,....Tk)
k
k-1 Tk Te+1
Markov w.r.t. Ty_q Markov w.r.t. Ty Markov w.r.t. Tyiq
p(IT) = [ [Pl Ti) M= (r1,...,7K)
k
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Model

L
k-1 Ik Fk+1
Th-1 Tk !
o ©
p(TIK) = [ [p(Ti) T=(Ty,....Tk)
k
k-1 Tk Te+1
Markov w.r.t. Ty_q Markov w.r.t. Ty Markov w.r.t. Tyiq
p(IT) = [ [Pl Ti) M= (r1,...,7K)
k
Yo S ey YR Yrer W g

p(Yimm) =[] [ ]p(Y!1Tiemo)

k terg
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Inference
@

» Marginal likelihood

p(YIK) = Z Z fp(Y,H,T,m|K)dH
meMk TeT K

N-1 . NpP-2\ K
1K) = . pK(P-2) -
Ml - 1775 (K—l) p ( )
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A complexity result
L

Proposition (Schwaller and Robin 2016)

Under some assumptions on prior distributions, the marginal likelihood
p(Y|K) can be computed in O(max(K, p>)N?) time from locally
integrated quantities on II.
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Prior distributions
@

» On segmentations .......... ... ... ... .. i, m
> Ontrees ......... ... T=(T1,...,Tk)
» Ondistributions ................................ IT=(m,...,7K)
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Prior distribution on m

Loic Schwaller

1
p(m|K) = ast
Ck(a) [[S;I;Lm

Ck(a) = Z 1_[ ast

me Mg [[s;tlem

To 71 T2 T3 T4
rn r r3 ry
1 5 15 19 26
1
p(m|K) = ——— 31,535 15315,19210,26
Ck(a)

Exact Bayesian Inference in Graphical Models Using Trees
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Prior distribution on m
L

1
p(m|K) = ast
Ck(a) [[S;I;[em

1
p(Y|K>=Zp(m|K>p(Y|m)=mmem) [] as

[s;tlem
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Prior distribution on m
L

1
p(m|K) = ast
Ck(a) [[S;I;[em

1
p(Y|K>=Zp(m|K>p(Y|m)=mmem) [] as

[s;tlem

Ck(A)
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Factorising p(Y'|m)
L

pim= 3 [ pviTim  an
TeT K
p(T)PIITR(Y I, m)

= Z Hp(Tk)fHp(yrk\ﬂk)l—[l)(ﬂk”—k)dﬂ'k
k k

TeTK k

> 2T [ (Y™ impml T

TeT

1l

p(Y'™) = marginal likelihood on ry
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Integrating on m
L 2

[ o

[s;tlem

p(m) = 0
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Integrating on m
L 2

[ o

[s;tlem

- Ck(a)

_ ! ey st
PV = 2, || 2w pY™ D

meMkg [s;tlem
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Integrating on m

°
m=——[] a
g CK(a) [s;tlem -
Ck(A)
Y|K) =
p(Y|K) (@)
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Marginal likelihood on a segment
@

p(Y)= 3 p(T) [ BV Im)p(al Ty

TeT
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Prior distribution on T
L

1
D=5 [] b
2(b) {ijleEr

ziy=> [ b

TeT ({ijleEr
Z(b)

; 1 |
: ) p(T) = ——=b1obosbas bsy |
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Prior distribution on T
L

1
p(T) = 5— bij
2) i jreer

o 1 ' )
PO = 505 TZE;_fp(Y mpeinx 1

ijYeEr
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Prior distribution on T
L

1
p(T) = 5— bij
2) i jreer

o 1 ' )
PO = 505 TZE;_fp(Y mpeinx 1

ijYeEr

« Z(B)
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Prior distribution on 7
@

> Jel strong hyper Markov w.r.t. to the complete graph
» {pT}rer compatible family built from p on 7~

p(x|T) = pT (n) VT eT
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Prior distribution on 7
@

> Jel strong hyper Markov w.r.t. to the complete graph
» {p")lrer compatible family built from p on 7~

p(|T) = pT (1) VT €T

r r p(YI.r, Y)

{ijleEr

p(Y;, er) = fmj(y,-r, er)p,-j(zr,-j)dn,-j

P(Y,-r)=f7ri(y,-r).0i(”i)dﬂi
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Integrating on T
®

1
P(T)=m 1—1 bi;

{ijleET
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Integrating on T

p(T) = Z(b) [1 &

{ijleET

p(YE YD)
Yy =—_ywn . g
AV Z(b) 2, 11 & fp(Y’)p(Y’)

TeT {i,jleET
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Integrating on T

1
P(T)=m 1—1 bjj

{ijleET

Z(B(r))

ry — ()(n) .
p(Y")=U Z(b)

" POYTL YD)
i p(Y)p(Y))
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In a nutshell

B(ll,‘?l[)

B(I[S;tll)

B{[l,‘N+1[)

Loic Schwaller

—

—

O(N*p?)

[N p(YIIl;Zﬂ)

> p(YIst)

— BN p(YI[l,'N+1[)

O(N?K)

— P(YIK)
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In a nutshell

Proposition (Schwaller and Robin 2016)

Under some assumptions on prior distributions, the marginal likelihood
p(Y|K) can be computed in O(max(K, p>)N?) time from locally
integrated quantities on II.
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Other quantities

» Posterior probability of events

{there is a change-point at time t}
{m contains segment [[s; t[[}

» Posterior distribution of K

P(K)[AK]l N+1 22:
p(K|Y) oc ————"— E
[aK]l,N+l Zi: |l

12345678910
K
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Simulations

\\\\\



Data generation

» p = 10 variables
» Time-series of size N =70, 140 and 210
> Four segments of lengths 2, 1V, 2|V

Il -
I 5 I T o
IR N IO T -

1 T T T3 N

v

Three structure scenarios
> spanning trees
> Erdos-Rényi, pc =2/p
> Erdos-Rényi, pc = 4/p

v

For each sample size and structure series, 100 datasets with centered
Gaussian observations were generated.
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Inference

Tree model

Number of
segments

Segmentation

Trees

Precision
matrices

Observations

Loic Schwaller

(T iid. T ~UT)
{Ar}rem ind. Ar ~ hW(a, d, Teirim))
{Yt}lvzl ind. Y~ N(Opa A,) Vter

Exact Bayesian Inference in Graphical Models Using Trees
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Inference

Observations {Yt},’:\lz1 ind. Yt~ Ny A Vter

Full model
| Number of K K ~ P(4) 3
! Segmentation m m~UMg) |
et Ardrem iid Ay~ W(a9) 3
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Results

@
Tree scenario
0.30 : : 0.304 : : :
0.20 3 3 0.20- 3 3 3
N=70 ' |
om0 0 : 010/ W
= — T — 7 7 7
0.00— = 3 U 0,004 T 3 T
o 20 40 60 o 20 40 60
0.30 : : : 0.30 : : :
0.20 3 3 3 0.20 3 3 3
N=140 ' ' ' ' '
010 \ ; ; 0.10-] A A
/M«M/\\,, AN ] : :
0.00 T T = 0.00 T T T
[ 50 100 o 50 100
0.30 : : : 0.304 : : :
020 3 3 3 0.20-| 3 3 i
N=210 ; ;
0.10 f 0.10 M[\
0.00 T T H T . T H T 0.00 T T H T H T H T
0 50 100 150 200 0 50 100 150 200
Tree model Full model

Posterior probability of a change-point occurring at time t, integrated on K
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Results

N=140

N=210

Loic Schwaller

ER, low density scenario

030

0.20

0.10

. 0.30]
N 0.20

0.10

: 0.30
N 0.20

0.10

150 200 0 50

Tree model

Full model

150

Posterior probability of a change-point occurring at time t, integrated on K
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Results

L
ER, high density scenario
0.30 : : : 0.30 : : :
0.20 3 3 3 0.20 3 3 3
N=70 | i ! : A ;
" ) e i
0.00 41— T T T 0.00-—+ T T T +
o 20 40 60 o 20 40 60
0.30 : : : 0.30 : : :
» R | - . 1
N=140 ! ! ! ! i !
0.10 : : : 0.10 : + i
0.00 = i =N - e o. - [\’\ M F .
] 50 100 o 50 100
0.30 : : : 0.30 : : :
. A | - A |
N=210 ! | ! ! t i
0.10 + + t 0.10 t + +
oo skt N NS bR A
: 0 50 100 150 200 : o 50 100 150 200
Tree model Full model

Posterior probability of a change-point occurring at time t, integrated on K
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Results

Tree

ER
low density

ER
high density

Loic Schwaller

Full Tree

1

Sample Slze

210

50

25

70 10 210 70 140
Sample Size

K = arg max p(Kly)
K

K(m) =K (arg maxp(m|y))
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4 Drosophila life cycle microarray data
L

» Expression levels of 11 genes involved in wing muscle development
> 67 time-points

1.001 E Larva Adult
'
] "
0.78 D Model
i i
0501 f n - - Ful
1
,’v N — Tree
1 I
025 S
. 1
sa L
0.00 : i : ;
0 20 40 60
Time
Tree Full
1.00 -|
0.75
—
S
0.50 -
a
0.25 I
000 - = - -
T T T T T T T T T T T T T T T
12345678910 12345678910
K
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<%=  Drosophila life cycle microarray data

» 5 segments selected by p(K|Y')

> Best segmentation found by Neighbourhood Search algorithm
(Auger and Lawrence 1989)

: Schwaller L. (2015) saturnin: SpAnning Trees Used foR Network InfereNce :
I https://cran.r-project.org/web/packages/saturnin/ !
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https://cran.r-project.org/web/packages/saturnin/

fMRI Data?

> Averaged blood flow of 5 regions
» 20 participants
» 215 images at 2s intervals

075 ? o2

050 %

025 2o

og

% <

075 2 ow

Zo2s 2 8

goxs 5 Zoos

<700 [

Eors ?

o g foo

Dozs A A i

50 S 5 o3

5 » 8

5075 -1 g

Zoso 1 2

Toos § &0z §
K Fl

og9 H

% H

075 f—"j 01 g

050 %

025 g

0.00 T Y VU T T 0o

2Cribben et al. 2012.
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fMRI data3

1/a

U
psn= > 11 [ f [ [pt 16u)p(0u1 THdo,

TeT u=1 ter

Tree. Ful

10
15
20

,
42k
p(Y)

|~ P

Posterior Change-point Probability

B 025+ I .
“ W
AN | Fa A

7ssmu|z<au15 78 0 1011 12 13 14 15

1-19 20-38 39-62 63-72 73-111 112-132 133-150 151-187 188-215

 HDHDIOSD%

3Cribben et al. 2012.

Loic Schwaller Exact Bayesian Inference in Graphical Models Using Trees 43/46



Extensions

» Covariates
> Easy to take into account in a Gaussian setting
> Not so much generally

» Application to microbial ecology
using a copula-based pragmatical approach

> Learning direct interactions between species
> Taking environmental covariates into account

: B. Jakuschkin et al. (2016) “Deciphering the pathobiome: intra- and interkingdom
! interactions involving the pathogen Erysiphe alphitoides” Microbial Ecology
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Extensions

» Temporal dependence
> Within segments
> Based on Temporal Interaction Models (Siracusa 2009)
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Conclusion & Perspectives

Problem at hand

! time-series

» Exact & Bayesian inference in O(max(p?, K)N?) time

» Using algebraic results on
> Spanning Trees
> Segmentations

» Using (hyper) Markov properties

» Numerical issues

» R package
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