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Support Recovery/Detection

Motivation

We are interested in recovering the support (or detecting the

presence) of an unknown signal.



Support Recovery/Detection

Classical Framework

Let x = (x1, . . . , xn)T ∈ Rn denote the unknown signal where

xi =

{
µ , if i ∈ S
0 , if i /∈ S

,

with µ > 0 �xed and S ∈ C where C is a class of sets.



Support Recovery/Detection

Classical Framework

We observe

Yi = xi + Wi , Wi
iid∼ N(0, 1), i = 1, . . . , n .

Our goal is to recover S or to detect its presence (decide between

H0 : S = ∅ and H1 : ∅ 6= S ∈ C).

How does µ need to scale so that the above tasks are possible?



Support Recovery/Detection
Classical Framework

Depends on the class C. From now on, assume |S | = s � n ∀S ∈ C
(sparse signals). We want max

S∈C
P(Error) to be small.

max
S∈C

∑
i∈S

Xi does the job (in the sparse regime).

See e.g. Lugosi et. al. (2010): On combinatorial testing problems; Arias-Castro et. al. (2011): Detection

of an Anomalous Cluster in a Network



Adaptive sensing

Learning to learn

• How can we take advantage of feedback?

• How much can we gain?



Adaptive sensing

Framework

The unknown signal and the goals are the same as before.

Measurement model:

Yt = xAt + Wt , Wt
iid∼ N(0, 1), t = 1, . . . , n ,

where At ∈ {1, . . . , n} can depend on past observations

{Aj ,Yj}t−1j=1 .



Adaptive sensing

Framework

The unknown signal and the goals are the same as before.

Measurement model:

Yt = xAt + Γ
−1/2
t Wt , Wt

iid∼ N(0, 1), t = 1, 2, . . . ,

where At ∈ {1, . . . , n}, Γt > 0 can depend on past observations

{Aj , Γj ,Yj}t−1j=1 , and must satisfy

ES

(∑
t

Γt

)
≤ n, ∀S ∈ C .



Adaptive sensing

Simple procedure for recovery

Let C be the class of all s-sparse sets and suppose we wish to

recover the support (we want Ŝ s.t. max
S∈C

PS(Ŝ 6= S) ≤ ε).

Algorithm

• Fix Γt = Γ = 1/3 ∀t ∈ N
• For each entry xi , i = 1, . . . , n do the following:

• Measure Yi,j = xi + Γ−1/2Wi , j = 1, . . . , τi , where
τi = min{j : Yi,j ≤ 0} ∧ log

2
(n/ε).

• i ∈ Ŝ ⇐⇒ Yi ,j > 0∀j = 1, . . . , log2(n/ε).



Adaptive sensing
Simple procedure for recovery - analysis

For i /∈ S

P(i ∈ Ŝ) = P(Yi ,j > 0 ∀j) ≤ (1/2)log2(n/ε) = ε/n .

For i ∈ S

P(i /∈ Ŝ) ≤ P(∃j : Yi ,j ≤ 0) ≤ log2(n/ε)

2
e−µ

2/6 ≤ ε/s

whenever µ ≥
√
6
(
log s

ε + log
log2(n/ε)

2

)
.

Hence

PS(Ŝ 6= S) ≤
∑
i /∈S

P(i ∈ Ŝ) +
∑
i∈S

P(i /∈ Ŝ) ≤ ε .



Adaptive sensing

Simple procedure for recovery - analysis

How much precision do we use in expectation?

ES

(∑
t

Γt

)
≤ Γ

(∑
i /∈S

2 +
∑
i∈S

log2(n/ε)

)
≤ 1

3
(2n+s log(n/ε)) ≤ n

if s � n.

To summarize, this simple procedure succeeds when

µ &

√
log s + log log n + log

1

ε
.



Reminder - SLRT (Wald)

We wish to test H0 : Yj ∼ N(0, Γ−1) and H1 : Yj ∼ N(µ, Γ−1),
j ∈ N with as few observations as possible (in expectation) with

prescribed error probabilities α, β. Consider the process

Z0 = 0, Zt =
t∑

j=1

log
f1(Yi )

f0(Yi )
, t = 1, 2, . . .

Let l = log β < 0 < u = log(1/α) and T = inf{t : Zt /∈ (l , u)}.
We then have P0(ZT ≥ u) ≤ α and P1(ZT ≤ l) ≤ β.

As Γ→ 0 we also have

• P0(ZT ≥ u)→ α and P1(ZT ≤ l)→ β

• E0(T ) ≈ 2
Γµ2

log 1
β and E1(T ) ≈ 2

Γµ2
log 1

α



Adaptive sensing
Re�nement

Replace the core of the previous procedure with a SLRT to test

between xi = 0 and xi = µ. Set Type I and II error probabilities to

be α = ε/n and β = ε/s.

We have PS(Ŝ 6= S) ≤ ε as before.

The precision used (in expectation) is

ES

(∑
t

Γt

)
≤ 2

µ2

(
n log

s

ε
+ s log

n

ε

)
.

If n is large (and s � n) this is at most n whenever

µ ≥
√
2 log

s

ε
+ o(1) .

This is optimal.



Adaptive sensing

Detection

What about detection? Easy: set α as before and β = s
√
ε. This

ensures that at least one signal component is found w.p. 1− ε
under the alternative.

Scaling laws do not depend on the structure anymore (as long as

we have symmetry in the class)!



Adaptive sensing

Structured Recovery

For certain classes it is enough to �nd one component and the

problem becomes "easy". For instance, if there was no noise:
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Adaptive sensing

Structured Recovery

For certain classes it is enough to �nd one component and the

problem becomes "easy". For instance, if there was no noise:



Adaptive sensing

Structured Recovery

Main idea: take a "noiseless case" algorithm for support recovery

and "robustify" it against noise by using SLRTs.

Typically the algorithm will have two phases:

• Search: Find an active component (can also use random

search)

• Re�nement: Exploit structure around that component

Algorithms may alternate between the two phases (for instance in

case of unions of stars).

The main di�erence between the two phases is that the error

probabilities for the SLRTs are set di�erently.



Adaptive sensing

Detection

Still considering probability of error we get (recall we are in the

sparse regime s � n).



Adaptive sensing
Detection

For technical reasons we only managed to show lower bounds for

the recovery problem considering max
S∈C

ES(|Ŝ4S |) ≤ ε.

Adaptive algorithms can improve on non-adaptive ones by

• Better mitigating the e�ects of noise log n ; log s

• Better capitalizing on structure (in certain cases) ; 1/s



Adaptive compressed sensing

Framework

The unknown signal and the goals are the same as before.

Di�erent measurement model:

Yt = < x ,A(t) >+ Wt , Wt
iid∼ N(0, 1), t = 1, 2, . . . ,

where A(t) ∈ Rn can depend on past observations {A(j),Yj}t−1j=1 ,

and must satisfy

ES

(∑
t

‖A(t)‖2F

)
≤ n, ∀S ∈ C .



Adaptive compressed sensing

Detection

Consider the energy test Y1 =< x , 1 > +W1, where 1 ∈ Rn is a

vector of ones and Ψ = 1{Y1 > sµ/2}.

We have

max
i=0,1

Pi (Ψ 6= i) ≤ ε ,

whenever µ ≥
√

8
s2
log 1

2ε . This is optimal among all tests

(adaptive or non-adaptive).

Structure and adaptivity do not play a role.

Arias-Castro (2012): Detecting a vector based on linear measurements



Adaptive compressed sensing

Simple procedure for recovery

Consider the 1-sparse case, and a binary search algorithm.

Let A(1) ∈ Rn s.t. A
(1)
i = 1{i ≤ n/2} and Y1 =< x ,A(1) > +W1.

If Y1 > µ/2 "go left" otherwise "go right", and iterate.

This simple procedure has max
S∈C

PS(Ŝ 6= S) ≤ ε whenever

µ ≥

√
8

(
log

log2 n

2
+ log

1

ε

)
.

(also
∑
‖A(t)‖2F ≤ n)

Similarly as before, replacing the observations by SLRTs (multiple

measurements with small sensing energy) we can get rid of the

log log term.



Adaptive compressed sensing

Recovery

One can use the insights gained above for structured recovery. For

s-sparse sets do s binary searches in parallel.

For structured sets do two phases as before. In the search phase

• Intervals: Search for a block of activation.

• Stars: Search for the center of the active star.

• Submatrices: Search for rows that contain activation.

The re�nement phases are "easy" when s � n (compared to the

search phases).

Malloy, Nowak (2013): Near-Optimal adaptive compressed sensing



Adaptive compressed sensing

Recovery

Non-adaptive rates are necessary, adaptive ones are su�cient and

except for submatrices also necessary.

Similar behavior as before.



Adaptive compressed sensing

Remark - number of measurements

Appeal of compressive sensing: few measurements (≈ s log n). We

lose this in the algorithms above.

Note that in binary search ‖A(t)‖0 = 2−t . This allows us to choose

‖A(t)‖2F ∼ t2−t and still satis�es
∑

t ‖A(t)‖2F ≤ n. This way we get

rid of the log log term (at the price of an increase in the constant).

Same can be done to all other algorithms ; same performance,

small number of measurements.

In the non-adaptive case s log n measurements are optimal. In the

non-adaptive case we don't know (yet).



Adaptive sensing

Final remark

The crux of all adaptive sensing algorithms is the sampling strategy.

We aim to collect the most "informative" samples based on what

we already learned.

Would a sampling strategy that at time t = 1, 2, . . . decides what
to do based on the posterior of S |Y1, . . . ,Yt−1 make sense?


