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What is meant by dimension

Our setup is the following:

• There is data X1, . . . , Xn, where Xi
i.i.d.∼ F on RD, for some D ∈ N which

we call the ambient dimension.

• Actually the dimension might be much smaller; eg.,

Xi = ϕ(X̃i) + σ εi, σ ≥ 0,

where ϕ : Rd 7→ RD, is some smooth embedding.

• The number d ≤ D is the intrinsic dimension of the dataset.

• I will talk about the estimation of the intrinsic dimension d.
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Why estimate the intrinsic dimension?

There are plenty of reasons to do this:

• Dimensionality reduction1 (eg., PCA, SOM, MDS, ISOMAP, LLE, Hessian
and Laplacian eigenmaps, LLP);

• Independent component analysis ([HKO01]);

• Adaptation;

• Avoid curse of dimensionality (if possible);

• Compressibility;

• Speed of algorithms;

1[Koh90, CC00, TDSL00, RS00, DG03, HC02, GK+06]
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Previous work
Main approaches

• Multidimensional scaling; [She62a, She62b, Kru64a, Kru64b, Ben69]

• Testing approach; [Tru68]

• Karhunen–Loève expansions; [FO71, Fuk82]

• AIC, BIC; [Aka74, Sch78]

• Correlation integral based; [CV02, Kég02, GP04, HA05, SRHI10]

• Clustering approaches; [EC12]

• Based on graphs; [CH04, FSA07, LPS+08]

• KNN; [LB04, KvL15]
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Previous work
Limitations

• They require extensive knowledge about distances or similarities between
observations, sometimes perturbations thereof, and about F ;

• Sometimes only limited information is available;

• Computationally heavy, typically at least O(Dn2);

• No results on consistency or rates;

• The scale at which we look at the data affects the dimension (not always
noted in the literature);
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Example of scale dependent dimension
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Modelling the data
Sampling

• We only assume that we can observe adjacency matrices A.

• Each Ai,j = 1 iif Xi and Xj are “close”.

• We model A (or the corresponding graph) as a random connection model:

• For some metric r and some number ε we assume that A = Aε, where
Ai,j = 1{r(Xi,Xj)≤ε}, i < j, completed by symmetry, no self-loops.

• This is a model from continuum percolation.

• r and ε may be unknown.

• The parameter ε represents the scale at which we look at the data.
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Modelling the data
Some definitions

• We actually work with B = Bε = A2
ε :

Bi , Bi,i =

n∑
j=1

Ai,j , and Bi,j =

n∑
k=1

Ai,kAk,j , i, j = 1, . . . , n, i 6= j,

• Define the functions p(x) and p(x, y),

p(x) = P{r(X,x) ≤ ε}, and p(x, y) = P{r(X,x) ≤ ε, r(X, y) ≤ ε},

• The Bi are equally distributed, not independent; same holds for the Bi,j :

Bi|Xi ∼ Bin{n− 1, p(Xi)}, and Bi,j |(Xi, Xj) ∼ Bin{n− 2, p(Xi, Xj)}.
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Modelling the data
Some definitions

• We define for i, j, k mutually different,

p1 = p1(ε) = EAi,j , and p2 = p2(ε) = EAi,kAk,j .

We see that

• p1 = P{r(X,Y ) ≤ ε} = EP{r(X,Y ) ≤ ε|X} = Ep(X),

• p2 = EP{r(X,Z) ≤ ε, r(Z, Y ) ≤ ε|X,Y } = Ep(X,Y ),

• p2 = EP{r(X,Z) ≤ ε, r(Z, Y ) ≤ ε|Z} = E{p(Z)2} ≥ E{p(Z)}2 = p21.
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Defining the estimators
Intuition behind the estimators

• Consider, for x ∈ X ⊆ RD, the ball V (x, ε,D) = {y ∈ RD : r(x, y) ≤ ε},
and denote V (ε,D) = Vε(0, ε,D).

• If ε is small (or if ε→ 0) and if F admits a continuous density f with
respect to the Lebesgue measure µ

p(x) =

∫
X
1V (x,ε,D)(y) f(y) dµ(y) ≈ f(x)

∫
X
1V (ε,D)(y) dµ(y) = f(x) vε,

where

vε =

∫
V (ε,D)∩X

dµ ≈
∫
V (ε,d)

dµ = µ{V (ε, d)}.
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Defining the estimators
Intuition behind the estimators

• So p(x) should depend on d (and x, and ε) but not D.

• Since p1 = E{p(X, ε)} and p2 = E{p(X, ε)2}, we can approximate

p1 ≈ Ef(X)µ{V (ε, d)} and p2 ≈ E{f(X)2}µ{V (ε, d)}2.

• Using estimators for p1 or p2 we could invert this to get estimates for d.

• Instead we can get rid of the constants by considering

p1(2ε)

p1(ε)
≈ µ{V (2ε, d)}

µ{V (ε, d)}
, and

p2(2ε)

p2(ε)
≈ µ{V (2ε, d)}2

µ{V (ε, d)}2
.
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p1 ≈ Ef(X)µ{V (ε, d)} and p2 ≈ E{f(X)2}µ{V (ε, d)}2.

• Using estimators for p1 or p2 we could invert this to get estimates for d.

• Instead we can get rid of the constants by considering

p1(2ε)

p1(ε)
≈ µ{V (2ε, d)}

µ{V (ε, d)}
, and

p2(2ε)

p2(ε)
≈ µ{V (2ε, d)}2

µ{V (ε, d)}2
.
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Defining the estimators
Intuition behind the estimators

• If p̂1(ε) and p̂2(ε) are estimators for p1(ε) and p2(ε), respectively, then we

implicitly define d̂1, d̂2 as any solutions to

p̂1(2ε)

p̂1(ε)
= g(ε, d̂1) and

p̂2(2ε)

p̂2(ε)
= g(ε, d̂2)

2,

• We should expect in general that g(ε, d) ≈ g(d) = 2d, and so d:

d̂1 =
log p̂1(2ε)− log p̂1(ε)

log 2
, and d̂2 =

log p̂2(2ε)− log p̂2(ε)

log 4
.

• If d is an integer, then define also d̃1 = [d̂1] and d̃2 = [d̂2].
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Estimates of p1 and p2
Definition and relation to correlation integral

• The obvious estimators for p1 and p2 are

p̂1 =
1

mn

mn∑
i=1

Bi
n− 1

, and p̂2 =
2

mn(mn − 1)

mn−1∑
i=1

mn∑
j=i+1

Bi,j
n− 2

.

• Since EBi/(n− 1) = p1, and EBi,j/(n− 2) = p2, p̂1 and p̂2 are unbiased.

• As a function of ε, if r(x, y) = ‖x− y‖2, p̂1 is called the correlation integral2

C(ε) = lim
n→∞

2

n(n− 1)

n∑
i=1

n∑
j=i+1

1{‖xi−xj‖2≤ε}.

• The limit as ε→ 0 of − log{C(ε)}/ log(ε) is called correlation dimension.

2[CV02]
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Estimates of p1 and p2
Asymptotics

Theorem

Let mn ≤ n such that mn →∞ as n→∞. If mn = o(n), and p2 > p21, then

S
−1/2
1

(
p̂1
p1
− 1

)
d−→ N(0, 1), where S1 =

p2 − p21
mn p21

.

If mn = n then the previous display also holds if we assume that n2p1 is bounded
away from 0, p2 . np21, n

2(p2 − p21)→∞, ps,3 − p1p2 . n(p2 − p21)2, and
ps,4 − p41 . (p2 − p21)2.

Theorem

Assume that p2 is such that as n→∞, n3p2 is bounded away from zero, and
that ps,3 + pl,3 . n3p22. Then,

S
−1/2
2

(
p̂2
p2
− 1

)
= Op(1), where S2 =

ps,4 + 4pl,4 + 4p0,2 − p22
np22

.
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Consistency of the estimators
Asymptotics of d̂1: implicit estimator

Theorem

Assume that the conditions required for the convergence of p̂1(ε) and p̂1(2ε) with

rate m
1/2
n hold. For that ε, d, and mn, assume that, as n→∞,

p1(2ε) = p1(ε) g
(
ε, d+ o(m−1/2n )

)
. (B)

Assume that the derivative of d 7→ g(ε, d) exists, is continuous and non-zero at d.
Then, as n→∞,

m1/2
n

{
d̂1 − d

}
d−→ N

(
0,

{
∂ log g(ε, d)

∂d

}−2
V

)
.

where V = p2(ε)−p1(ε)2
p1(ε)2

+ p2(2ε)−p1(2ε)2
p1(2ε)2

− 2
Cov
{
p̂1(ε), p̂1(2ε)

}
p1(ε) p1(2ε)

.
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Consistency of the estimators
Asymptotics of d̂1: explicit estimator

Theorem

Assume that the conditions required for the convergence of p̂1(ε) and p̂1(2ε) with

rate m
1/2
n hold. For that ε, d, and mn, assume that, as n→∞,

p1(2ε) = p1(ε)

2d+o(m
−1/2
n )︷ ︸︸ ︷

g
(
ε, d+ o(m−1/2n )

)
. (B)

Assume that the derivative of d 7→ g(ε, d) exists, is continuous and non-zero at d.
Then, as n→∞,

m1/2
n

{
d̂1 − d

}
d−→ N

(
0,

log(2)−2︷ ︸︸ ︷{
∂ log g(ε, d)

∂d

}−2
V

)
.

where V = p2(ε)−p1(ε)2
p1(ε)2

+ p2(2ε)−p1(2ε)2
p1(2ε)2

− 2
Cov
{
p̂1(ε),p̂1(2ε)

}
p1(ε) p1(2ε)

.
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Consistency of the estimators
Asymptotics of d̂2

Theorem

Suppose that for some δ > 0 and some κ > 1 (eventually depending on ε),

κ2 g(ε, d− δ/2)2 ≤ p2(2ε)

p2(ε)
≤ 1

κ2
g(ε, d+ δ/2)2. (I)

uniformly in ε (or if ε is know, for that ε). Then

P
{∣∣d̂2 − d∣∣ < δ/2

}
≥ 1− κ2S2(ε) + S2(2ε)

(κ− 1)2
.

If d is an integer and we take δ = 1, then we get a lower bound for P
(
d̃2 = d

)
.
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Consistency of the estimators
Bound for specific design: price of high intrinsic dimension

• For Gaussian design we can bound, for appropriately small ε,

S1(ε) ≤

{
2/
√
3− 2ε

}d
e−ε(1−2ε) − 1

mn
·

• For uniform design we can bound, for appropriately small ε,

S1(ε) ≤

{
1/(1− 2ε)2

}d
− 1

mn
·

• So in general we need rather large sample size if d is large.
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Numerical results
Comparison with other estimators: the real data

We compared our estimators with some competing estimators with some
simulated- and real data. The real data:

• ’Isomap faces’ dataset

• ’Hands’ dataset

• ’MNIST’ dataset
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Numerical results
Comparison with other estimators: the results

n d D Dataset d̂ ECAP MLE CorrDim RegDim

1 1000 1 3 Unif. on Helix 0.99 1.00 1.00 1.00 0.99

2 1000 2 3 Swiss roll 1.94 2.14 1.94 1.99 1.87

3 1000 5 5 Gaussian 5.06 5.33 5.00 4.91 4.86

4 1000 7 8 Unif. on S7 6.81 5.88 6.53 6.85 6.23

5 5000 7 8 Unif. on S7 6.88 6.85 6.72 6.95 6.46

6 1000 12 12 U{[0, 1]12} 9.45 7.74 9.32 10.66 8.78

7 5000 12 12 U{[0, 1]12} 10.08 9.24 9.76 10.83 9.26

8 698 – 64× 64 Isomap faces 3.99 3.04 3.99 3.53 4.22

9 481 – 512× 480 Hands 2.75 1.27 2.88 3.92 2.56

10 7141 – 28× 28 MNIST “3” 14.98 8.92 15.95 14.17 14.75

11 6824 – 28× 28 MNIST “4” 13.68 8.13 14.44 9.54 13.16

12 6313 – 28× 28 MNIST “5” 15.94 8.40 15.55 18.00 14.28
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Recap / Conclusions

• Our approach combines the notion of correlation integral with the doubling
property of the Lebesgue measure.

• This gives us (essentially) parameter free estimators of intrinsic dimension.

• We can estimate scale dependent intrinsic dimensions.

• We give assumptions under which we derive a bound on the probability of
recuperating the true dimension.

• The simulations show that the estimators compare well with competing
estimators for different types of real- and simulated data.

• In particular, the estimators do well without using distance data.

• For large (intrinsic) dimension, we need large sample sizes to get accuracy.

• The dimension is often underestimated (based on the simulations).
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Thanks for listening.
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Moments of p̂1 and p̂2

• The variance of p̂1 can be expressed in terms of polynomials in n and EBi,
EB2

i , and EBiBj .

• The variance of p̂2 can be expressed in terms of polynomials in n and EBi,j ,
EB2

i,j , EBi,jBi,k, and EBi,jBk,l.

• Some of these have general formulas

EBri =

r∑
k=1

{
r

k

}
(n− 1) · · · (n− k)

ps,k︷ ︸︸ ︷
EAi,j1 · · ·Ai,jk ,

EBri,j =
r∑

k=1

{
r

k

}
(n− 1) · · · (n− k)

pq,k︷ ︸︸ ︷
EA1,k+1A1,k+2 · · ·Ak,k+1Ak,k+2 .

• In general it is a lot of work to count the graphs.
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Moments of p̂1 and p̂2
General moments involving entires of B

EBiBj =
n∑

l1=1

n∑
l2=1

EAi,l1Aj,l2 −→ I = {(1, 3), (2, 4)}; C =


· 1 1 0
· · 0 1
· · · 0
· · · ·



Multiplier:  1 Multiplier:  1 Multiplier:  3

EBiBj = p1 + 3(n− 2)p2 + (n− 2)(n− 3)p21.
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