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What is meant by dimension

Our setup is the following:

i.3.d.

There is data X1q,..., X, where X "X" F on RP, for some D € N which
we call the ambient dimension.

Actually the dimension might be much smaller; eg.,

X1:<)0(XZ)+O'EZ, O'ZO,

where ¢ : R? i+ RP | is some smooth embedding.

The number d < D is the intrinsic dimension of the dataset.

| will talk about the estimation of the intrinsic dimension d.
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Why estimate the intrinsic dimension?

There are plenty of reasons to do this:

e Dimensionality reduction® (eg., PCA, SOM, MDS, ISOMAP, LLE, Hessian
and Laplacian eigenmaps, LLP);

¢ Independent component analysis ([HKOO01]);
o Adaptation;

o Avoid curse of dimensionality (if possible);

o Compressibility;

e Speed of algorithms;

1[Koh90, CC00, TDSLOO, RS00, DGO3, HCO2, GK™06]



Previously

Previous work

Main approaches

e Multidimensional scaling; [She62a, She62b, Kru64a, Kru64b, Ben69]
e Testing approach; [Tru68]

o Karhunen-Loéve expansions; [FO71, Fuk82]

e AIC, BIC; [Aka74, Sch78]

o Correlation integral based; [CV02, Kég02, GP04, HA05, SRHI1(0]

e Clustering approaches; [EC12]

e Based on graphs; [CHO04, FSAQ7, LPS™08]

o KNN; [LB04, KvL15]
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Previous work

Limitations

o They require extensive knowledge about distances or similarities between
observations, sometimes perturbations thereof, and about F;

e Sometimes only limited information is available;

o Computationally heavy, typically at least O(Dn?);

e No results on consistency or rates;

e The scale at which we look at the data affects the dimension (not always
noted in the literature);



Previously

Example of scale dependent dimension




Previously

Example of scale dependent dimension




Previously

Example of scale dependent dimension

7/21



Previously

Example of scale dependent dimension

7/21



Why? Previously Modeling Intuition Consi: y Numerics Conclusions

Modelling the data

Sampling

e We only assume that we can observe adjacency matrices \A.



Why? Previously Modeling Intuition Consi: y Numerics Conclusions

Modelling the data

Sampling

e We only assume that we can observe adjacency matrices \A.

e Each A, ; = 1iif X; and X are “close”.



Modeling

Modelling the data

Sampling

e We only assume that we can observe adjacency matrices \A.
e Each A, ; = 1iif X; and X are “close”.

e We model A (or the corresponding graph) as a random connection model:



Modeling

Modelling the data

Sampling

We only assume that we can observe adjacency matrices \A.

Each A; ; = 1iif X; and X are “close”.

We model A (or the corresponding graph) as a random connection model:

For some metric r and some number € we assume that A = A, where
Aij = 1in(x,,x;)<ep & < J, completed by symmetry, no self-loops.



Modeling

Modelling the data

Sampling

We only assume that we can observe adjacency matrices \A.

Each A; ; = 1iif X; and X are “close”.

We model A (or the corresponding graph) as a random connection model:

For some metric r and some number € we assume that A = A, where
Aij = 1in(x,,x;)<ep & < J, completed by symmetry, no self-loops.

This is a model from continuum percolation.



Modeling

Modelling the data

Sampling

We only assume that we can observe adjacency matrices \A.

Each A; ; = 1iif X; and X are “close”.

We model A (or the corresponding graph) as a random connection model:

For some metric r and some number € we assume that A = A, where
Aij = 1in(x,,x;)<ep & < J, completed by symmetry, no self-loops.

This is a model from continuum percolation.

e r and € may be unknown.



Modeling

Modelling the data

Sampling

e We only assume that we can observe adjacency matrices \A.
e Each A, ; = 1iif X; and X are “close”.
e We model A (or the corresponding graph) as a random connection model:

e For some metric r and some number € we assume that A = A, where
Aij = 1in(x,,x;)<ep & < J, completed by symmetry, no self-loops.

e This is a model from continuum percolation.
e r and € may be unknown.

e The parameter ¢ represents the scale at which we look at the data.
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e We actually work with B = B, = A?:

n n
B; £ B;; = ZAi,ja and B;; = ZAi,kAk,j7 Li=1....ni#],
=1 k=1

e Define the functions p(x) and p(x,y),

p(z) = P{T(X7 z) < 6}’ and p(x.,y) = ]P){T(Xv 1‘) < 67T(Xay) < 6}-,

e The B; are equally distributed, not independent; same holds for the B; ;:

B’L|X'L ~ Bin{nf 1, p(Xl)}, and BL7]|(X1,X]) ~ Bln{n—Q, p(Xl,Xj)}
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p1 =pi(e) = EA; 5, and p2 = pa(€) = EA,; 1Ay ;.

We see that
o 1 =P{r(X,Y) <e} =EP{r(X,Y) <¢X} =EpX),
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Modeling

Modelling the data

Some definitions

o We define for ¢, j, K mutually different,
p1 =pi(e) =EA; ;, and po = pa(€) = EA; Ay ;.
We see that
o ;1 =P{r(X,Y) <} = EP{r(X,Y) < ¢|X} = Ep(X),
e po =EP{r(X,2) <e,r(Z)Y) <¢X,Y} =Ep(X,Y),

o 02 =EP{r(X.2) < er(2.Y) < d 2} = E{p(2)*} > E{p(2)}* = p}.
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Intuition

Defining the estimators

Intuition behind the estimators

So p(z) should depend on d (and z, and €) but not D.

Since p1 = E{p(X,€)} and p2 = E{p(X, €)?}, we can approximate

1 REf(X)u{V(ed)} and py~E{f(X)*} u{V(e,d)}*.

e Using estimators for p; or p2 we could invert this to get estimates for d.

Instead we can get rid of the constants by considering

p1(2€) - w{V(2¢,d)} and pa(2€) - w{V (2¢,d)}?
p(e)  p{V(ed)}’ pa(e)  p{V(ed)}?

12 /27
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o If p1(e) and pa(e) are estimators for p;(€) and po(€), respectively, then we
implicitly define dy, d2 as any solutions to

:g(eadl) and :g(€7d2)2;

e We should expect in general that g(e,d) ~ g(d) = 2%, and so d:

Q= log p1(2¢) — log p1(€) and  d — log pa(2¢) — log pa(e)
! log 2 ’ log 4 '

e If d is an integer, then define also d; = [d;] and dy = [dy].

13 /27
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. 1 B; .
= n—1 and  p2 = (m Z Z
noi=1 n i=1 j= 7+1

e Since EB;/(n —1) = p1, and EB; j/(n — 2) = p2, p1 and pa are unbiased.

e As a function of ¢, if r(z,y) = ||z —

C(e) - nlil}olo n n — 1 Z Z 1{”17717”2<5}

i=1 j=i+1

2[cvo2]
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Estimates of p; and ps

Definition and relation to correlation integral

e The obvious estimators for p; and p, are
1 &8 B 2 et I B
pp = — , and .
b1 Moy, n—1 p2 n( —1) Z Z _9
=1 =1 j=i+1

Since EB;/(n — 1) = p1, and EB, ;/(n — 2) = ps, p1 and pa are unbiased.

e As a function of ¢, if r(z,y) = ||z —
€= Jim oy D 3 Nz
=1 j=i+1
e The limit as € — 0 of —log{C(€)}/log(e) is called correlation dimension.

2[cvo2]

14 /27
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Estimates of p; and ps

Asymptotics

Let m,, < n such that m,, — oo as n — co. If m,, = o(n), and py > p?, then

_ b2 — P%
My p%

51—1/2 <pl = 1) <, N(0,1), where S1
p1

If m,, = n then the previous display also holds if we assume that n’p, is bounded

away from 0, pa S np?, n*(pa — p7) — 00, ps.3 — pipe S n(p2 — p?)?, and

psa— i S (2 —p})?



Previously Modeling Intuition Consistency Numerics Conclusions References

Estimates of p; and ps

Asymptotics

Let m,, <n such that m, — oo asn — co. If m,, = o(n), and py > p% then

5 2
51_1/2 <pl = 1) <, N(0,1), where S1= b2 ];1.
D1 My P1

If m,, = n then the previous display also holds if we assume that n’p, is bounded
away from 0, pa S np?, n*(pa — p7) — 00, ps.3 — pipe S n(p2 — p?)?, and
Ps,a — pi < (p2 —pi)*.

Theorem

Assume that po is such that as n — 0o, npy is bounded away from zero, and
that ps 3 + pr.3 S np3. Then,

_ D g 4 4 —p3
Sy 1/ (m—1> —0,(1),  where 8, =LA Pt BP0 TPy
D2 e
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Consistency of the estimators

Asymptotics of di: implicit estimator

Theorem

Assume that the conditions required for the convergence of p;(€) and p;(2¢) with
rate m}/Q hold. For that €, d, and m,,, assume that, as n — oo,

P1(29) = p1(e) g (e, d+o(m; /). (B)

Assume that the derivative of d — g(e,d) exists, is continuous and non-zero at d.
Then, as n — oo,

—2
/2[5 d dlog g(e, d)
ml {dl d} —)N(O,{ L V).

__ p2(e)—pi(e)? p2(2¢)—p1(26)® C(’”{ﬁl(s)’ﬁ] (26)}
where V = mar P1(26)2 2 p1(€) p1(2¢€)
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Consistency of the estimators

Asymptotics of di: explicit estimator

Assume that the conditions required for the convergence of p1(e) and p;(2¢) with
rate m:/Q hold. For that €, d, and m,,, assume that, as n — oo,

gd+o(my /2

p1(20) = pa(€) (e, d+o(m; /). (B)

Assume that the derivative of d — g(e,d) exists, is continuous and non-zero at d.

Then, as n — oo, L
log(2)

—2
ml/2 {0?1 - d} d, N(O, {alogg(e’d)} V).

od

_ p0-p1? |, 2C-p(0® _ 5 Cov{pi(9h(29}
where V = iz T p1(2¢)2 2 p1(e) p1(2¢)
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Consistency of the estimators

Asymptotics of da

Suppose that for some 6 > 0 and some k > 1 (eventually depending on €),

p2(26)
p2(€)

K2 gle,d — 6/2)% < < gled+5/2)7 (1

uniformly in € (or if € is know, for that €¢). Then

52(6) T 52(26) .

P{‘dz—d|<5/2}21_“2 (k—1)2

If d is an integer and we take 6 =1, then we get a lower bound for P(JQ = d).
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Sl(é)

Mn
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Consistency of the estimators

Bound for specific design: price of high intrinsic dimension

e For Gaussian design we can bound, for appropriately small e,

9/ /3 3e ) emeli-29 _ 1
vz |

Sl(é)

Mn

e For uniform design we can bound, for appropriately small ¢,

{1/(1 - 26)2}d -1

Mn

Sl (E) <

e So in general we need rather large sample size if d is large.
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Numerics

Numerical results

Comparison with other estimators: the real data

We compared our estimators with some competing estimators with some
simulated- and real data. The real data:

e 'Isomap faces’ dataset
.

e 'MNIST' dataset
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Numerical results

Comparison with other estimators: the results

n d D Dataset d Ecap MLE CorrDim RegDim
1 1000 1 3 Unif. on Helix 0.99 1.00 1.00 1.00 0.99
2 1000 2 3 Swiss roll 194 214 194 1.99 1.87
3 1000 5 5 Gaussian 506 5.33 500 491 4.86
4 1000 7 8 Unif. on S7  6.81 588 653  6.85 6.23
5 5000 7 8 Unif. on S7 688 685 672  6.95 6.46
6 1000 12 12 u{[o,1]'2} 945 7.74 932 1066  8.78
7 5000 12 12 u{[0,1]*2}  10.08 924 976 1083  9.26
8 698 - 64x64 Isomapfaces 3.99 3.04 3.99 3.53 422
9 481 - 512x480 Hands 275 127 288  3.92 2.56
10 7141 - 28x28 MNIST “3" 1498 892 1595 14.17 14.75
11 6824 — 28x28 MNIST “4” 13.68 8.13 1444 954  13.16

12 6313 - 28 x 28 MNIST "5" 1594 8.40 1555 18.00 14.28

21 /27
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e The dimension is often underestimated (based on the simulations).
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EB;B;j = p1 + 3(n — 2)p2 + (n — 2)(n — 3)p3.
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