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Model

Model: Grap G = (V ,E ), with unweighted vertices V and
undirected, unweighted edges E .

Goal: Find communities:

Examples: Social networks, biochemical networks, information
networks (parallel computing)



Spectral algorithm I.

Definition: Laplacian L = D − A,
where D is the diagonal matrix of vertex degrees and A is the
adjacency matrix.

Properties:
• Since Di ,i =

∑
j Ai ,j the vector v1 = (1, 1, .., 1) is an

eigenvector of L with λ1 = 0 eigenvalue.
• All eigenvalues λi are non-negative.
• The # of zero eigenvalues gives the # of components.
• In symmetric matrices the eigenvectors corresponding to
different eigenvalues are orthogonal.

• In connected graphs the eigenvectors contain both positive and
negative components (except v1).



Spectral algorithm II.

Application: Consider the problem of finding two communities in a
connected graph.

Goal: Minimize the cut size

R =
1
2

∑
i ,j in diffe-
rent groups

Ai ,j =
1
4
sTL s =

n∑
i=1

a2i λi ,

where si = ±1 (group indicator), s =
∑n

i=1 aivi .

Problem: The minimum of R is taken in the trivial case
s = (1, 1, ..., 1).
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Spectral algorithm III.

Solution:
• Fix the size of the two groups (n1, n2). Then

a21 = (vT
1 s)

2 = (n1 − n2)2/n.

• Ideally s proportional to v2, but si ∈ {−1, 1}.
• Choose s close to proportional to v2:

si =

{
+1 if v (2)

i ≥ 0,
−1 if v (2)

i < 0.
(1)

• If #{v (2)
i ≥ 0} > n1, then assign the smallest one to the other

group.



Alternative spectral algorithm
Approximate algorithm: No size control on communities, using
ideas from above:

si =

{
+1 if v (2)

i ≥ 0,
−1 if v (2)

i < 0.
(2)

Example: The karate club

Runtime: O(n3), for sparse Laplacian m/(λ3 − λ2).

Alternatively: Minimize the ratio cut R/(n1n2), instead of R .
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Discussion of Spectral algorithms
Problem: Satisfactory if the network does not divide up easily into
groups but one has to do the best. However, they don’t reflect our
intuitively concept of network communities.



Kernighan-Lin algorithm

Algorithm:
• Assume that we know the community sizes |G1|, |G2|
• Assign benefit function for every division:

Q= # edges within − # edges between the two groups.
• Stage 1: Maximize ∆Q over all pairs i ∈ G1, j ∈ G2.
• Then switch vertices and repeat until from one group all
vertices have been swapped.

• Stage 2: Choose in the preceding sequence the maximum Q.

Runtime: worst case O(n2).

Example: Perfect match in the karate club.



Modularity

Problem:
• We usually don’t know the size of the communities.
• The number of edges between communities is smaller than
expected.

Definition: modularity - Benefit function (different, but related to
before):
Q = # edges within communities - expected # of such edges.

Second term is rather vague. What do we mean under it?

Null model: n vertices, Pi ,j the probability of an edge between i
and j . Then

Q =
1
2m

∑
i ,j

[Ai ,j − Pi ,j ]δ(gi , gj),

where gi denotes the community i belongs to.
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Choice of Pi ,j

Condition 1: ∑
i ,j

Pi ,j =
∑
i ,j

Ai ,j = 2m.

Example: Bernoulli model Pi ,j = p, which has binomial degree
distribution, not right skewed like most of real-world networks.

Condition 2: ∑
j

Pi ,j =
∑

j

Ai ,j =: ki

which for entirely random edges leads to

Pi ,j =
kikj

2m
.

This is closely related to the configuration model (preferal
attachment).
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Spectral optimization of modularity

Assumption: we have two communities, but no fixed size.

Definition: Modularity matrix
• Rewrite modularity function

Q =
1
4m

sTBs =
1
4m

∑
i

a2i βi ,

where B=A-P and s =
∑n

i=1 aiui (βi is the eigenvalue
corresponding to the eigenvector ui of B)

• There exists i , such that βi = 0 and vi = (1, 1, ..., 1).
• But there could be (and in practice are) both positive and
negative eigenvalues.



Spectral optimization of modularity II

Solution: similarly to the spectral algorithm

• Best would be to have s proportional to u1 (with largest β1).
• But si = ±1.
• Therefore take

si =

{
+1 if u(1)

i ≥ 0,
−1 if u(1)

i < 0.
(3)

Runtime: O(n2) (by using Lanczos method or its variants).



Example: Modularity



Negative Eigenvalues
Question: what information are stored in the negative eigenvalues?

Answer: “Anti-community structure”, i.e. numbers of edges within
groups are smaller than expected.
Procedure:
• Minimize modularity: take s almost parallel to vn
(corresponding βn).

si =

{
+1 if u(n)

i ≥ 0,
−1 if u(n)

i < 0.
(4)

• Refinement step: move single vertices between groups to
minimize modularity.

Other uses:
• Network correlation: Adjacency vertices have similar properties.
• Community centrality: How central vertices are in their
community.
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Example: Anti-community structure



Example: Community centrality



Multiple communities

Problem: In many real-world examples we don’t know the numbers
of the communities.

Approach: Repeated division into two: not ideal.
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Girvan and Newman algorithm
Idea: Remove edges from the networks, with high “betweenness
score”, iteratively.

Motivation: Few edges between communities are bottlenecks.
Traffic has to travel through them.

Algorithm
• Edge betweennes: # of geodesic paths between vertex pairs
containing the edge.

• Remove edges with the highest betweennesses until no edges
remains.

• Progress represented in dendogram:
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Girvan and Newman algorithm II.

Problem: No guide how many communities to have.

Solution:
• Introduce again modularity:

Q = fraction of edges within communities - expected value of
the same quantity

• If Q = 0 community structure is not stronger than by random
chance.

• Local peaks of Q during the algorithm indicates good divisions.
Runtime: Slow O(m2n) or O(n3).

Extensions:
• Monte Carlo estimate of betweennes Tyler at al.
• Local measure of betweennes (short loops) O(m4/n2) Radachi
et al.
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Modularity: multiple communities
Shortcomings: two communities, using only leading eigenvector.

Goal: Generalize to c communities.

Si ,j =

{
1 if vertex i belongs to community j ,
0 otherwise.

(5)

Then the modularity

Q = Tr(STBS) =
n∑

j=1

n∑
k=1

βj(uT
j sk)2,

where B = UDUT (D is diagonal with Di ,i = βi )

Optimally: Choose mutually orthogonal s1, ..., sc−1 proportional to
the leading eigenvectors with positive eigenvalues.

Problem: si ∈ {0, 1} and may not be possible to find as many
index vectors making positive contribution. Therefore it gives only
an upper bound on the number of communities.
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Modularity: multiple communities II
Generalization:
• Rewrite the modularity (for possible negative α):

Q = nα + Tr [STU(D− αI)UTS],

• Then define the p ≤ n dimensional vertex vector ri :

[ri ]j =
√
βj − αUi ,j

• Keeping the leading p eigenvalues

Q ≈ nα +
c∑

k=1

p∑
j=1

[ ∑
i∈Gk

[ri ]j
]2

=: nα +
c∑

k=1

|Rk |2.

Goal: Maximize the magnitude of vectors Rk =
∑

i∈Gk
ri by

dividing the vertices into groups.
Connections: It is also called the “Principal component analysis of
networks”.



Modularity: multiple communities II
Maximizing the magnitude of Rk :
• From the orthogonality of the eigenvectors we have

c∑
k=1

Rk =
n∑

i=1

ri = 0

• For c = 2: R1 R2 are equal magnitude and opposite directed.
• Removing vertex i from community k where RT

k ri< 0:

|Rk − ri |2 − |Rk |2 = |ri |2 − 2RT
k ri > 0.



Conclusion

• Algorithms for bisection graphs with known community size
(Laplacian spectral algorithm, The Kernighan-Lin algorithm)

• In lot of real-world example the community sizes are unknown
(Modularity algorithm)

• Modularity matrix contains various information
(anti-community structure, network correlation, community
centrality)

• Furthermore in real world examples usually there are more
communities (Girvan and Newman algorithm, generalized
modularity algorithm)

• Modularity algorithm: connection with figuration model, PCA
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