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Introduction

Bisection Algorithms

e Spectral algorithm (Laplacian)
e The Kernighan-Lin algorithm (greedy)
e Modularity algorithm

Multisection Algorithms

e Girvan and Newman algorithm
e Generalized modularity algorithm

Conclusion

Outline



Model

Model: Grap G = (V, E), with unweighted vertices V and
undirected, unweighted edges E.

Goal: Find communities:
Examples: Social networks, biochemical networks, information
networks (parallel computing)




Spectral algorithm |.

Definition: Laplacian L =D — A,
where D is the diagonal matrix of vertex degrees and A is the
adjacency matrix.

Properties:
. S.ince Dii=3%; A,-},- the vector v; = (1,1,.,1)is an
eigenvector of L with A\; = 0 eigenvalue.
o All eigenvalues A; are non-negative.
e The # of zero eigenvalues gives the # of components.

e In symmetric matrices the eigenvectors corresponding to
different eigenvalues are orthogonal.

e In connected graphs the eigenvectors contain both positive and
negative components (except vi).



Spectral algorithm |I.

Application: Consider the problem of finding two communities in a
connected graph.

Goal: Minimize the cut size
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i,jin diffe-
rent groups

where s; = +1 (group indicator), s = >"7_; ajv;.



Spectral algorithm |I.

Application: Consider the problem of finding two communities in a
connected graph.

Goal: Minimize the cut size

1 1 -
R=3 > A;J:4STLs:;a,?)\,-,

i,jin diffe-
rent groups

where s; = +1 (group indicator), s = >"7_; ajv;.

Problem: The minimum of R is taken in the trivial case
s=(1,1,..,1).



Spectral algorithm [l

Solution:
e Fix the size of the two groups (n1, n2). Then
ai = (vis)’ = (m — m)*/n.

e Ideally s proportional to vy, but s; € {—1,1}.

e Choose s close to proportional to va:

£ (2)
si:{ +1 if v/ >0, (1)

—1 ifvi? <o.

o If #{vi(z) > 0} > nq, then assign the smallest one to the other
group.



Alternative spectral algorithm

Approximate algorithm: No size control on communities, using
ideas from above:

()
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Example: The karate club

Runtime: O(n%), for sparse Laplacian m/(A\3 — \2).



Alternative spectral algorithm

Approximate algorithm: No size control on communities, using
ideas from above:

(@)
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Example: The karate club

Runtime: O(n%), for sparse Laplacian m/(A\3 — \2).
Alternatively: Minimize the ratio cut R/(n1n2), instead of R.



Discussion of Spectral algorithms

Problem: Satisfactory if the network does not divide up easily into
groups but one has to do the best. However, they don't reflect our
intuitively concept of network communities.

(a) (b)

FIG. 1 (a) The mesh network of Bern et al. [49]. (b) The
best division into equal-sized parts found by the spectral par-
titioning algorithm based on the Laplacian matrix.



Kernighan-Lin algorithm

Algorithm:
e Assume that we know the community sizes |Gi|, |G|

e Assign benefit function for every division:
Q= # edges within — # edges between the two groups.

e Stage 1: Maximize AQ over all pairs i € Gy, j € Gy.

e Then switch vertices and repeat until from one group all
vertices have been swapped.

e Stage 2: Choose in the preceding sequence the maximum Q.

Runtime: worst case O(n?).

Example: Perfect match in the karate club.



Modularity

Problem:
e We usually don't know the size of the communities.

e The number of edges between communities is smaller than
expected.
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before):

Q = # edges within communities - expected # of such edges.

Second term is rather vague. What do we mean under it?



Modularity

Problem:
e We usually don't know the size of the communities.

e The number of edges between communities is smaller than
expected.

Definition: modularity - Benefit function (different, but related to
before):
Q = # edges within communities - expected # of such edges.

Second term is rather vague. What do we mean under it?

Null model: n vertices, P;; the probability of an edge between /
and j. Then

Z[Au Pi18(gi &),

where g; denotes the community i belongs to.



Choice of P;;
Condition 1:

ZP,‘JZZA,"J'sz.
ij ij

Example: Bernoulli model P;; = p, which has binomial degree
distribution, not right skewed like most of real-world networks.



Choice of P;;

Condition 1:

ZP,‘JZZA,"J'sz.
ij ij

Example: Bernoulli model P;; = p, which has binomial degree
distribution, not right skewed like most of real-world networks.

d P=) A=k
j j

which for entirely random edges leads to

Condition 2:

kik;
Pij= 27;

This is closely related to the configuration model (preferal
attachment).



Spectral optimization of modularity

Assumption: we have two communities, but no fixed size.

Definition: Modularity matrix

e Rewrite modularity function
1 sT 2
Q= yy Bs = E a:Bi,

where B=A-P and s = > ; aju; (§; is the eigenvalue
corresponding to the eigenvector u; of B)

e There exists 7, such that 5; =0 and v; = (1,1,...,1).

e But there could be (and in practice are) both positive and
negative eigenvalues.



Spectral optimization of modularity Il

Solution: similarly to the spectral algorithm
e Best would be to have s proportional to u; (with largest 7).
e Buts; = +1.
e Therefore take

o)t if u) >0,
T -1 i <.

Runtime: O(n?) (by using Lanczos method or its variants).



Example: Modularity

r
-

FIG. 2 The dolphin social network of Lusseau et al. [68]. The
dashed curve represents the division into two equally sized
parts found by a standard spectral partitioning calculation
(Section II). The solid curve represents the division found
by the modularity-based method of this section. And the
squares and circles represent the actual division of the net-
work observed when the dolphin community split into two
as a result of the departure of a keystone individual. (The
individual who departed is represented by the triangle.)



Negative Eigenvalues
Question: what information are stored in the negative eigenvalues?



Negative Eigenvalues

Question: what information are stored in the negative eigenvalues?

Answer: “Anti-community structure”, i.e. numbers of edges within
groups are smaller than expected.
Procedure:
e Minimize modularity: take s almost parallel to v,
(corresponding 3,).

P =

—1 if " <.

]

11 if o™ >0,
{ (4)

e Refinement step: move single vertices between groups to
minimize modularity.



Negative Eigenvalues

Question: what information are stored in the negative eigenvalues?

Answer: “Anti-community structure”, i.e. numbers of edges within
groups are smaller than expected.
Procedure:
e Minimize modularity: take s almost parallel to v,
(corresponding 3,).

P =

—1 if " <.

]

11 if o™ >0,
{ (4)

e Refinement step: move single vertices between groups to
minimize modularity.
Other uses:
e Network correlation: Adjacency vertices have similar properties.
e Community centrality: How central vertices are in their
community.



Example: Anti-community structure

FIG. 7 (a) The network of commonly occurring English ad-
jectives (circles) and nouns (squares) described in the text.
(b) The same network redrawn with the nodes grouped so as
to minimize the modularity of the grouping. The network is
now revealed to be approximately bipartite, with one group
consisting almost entirely of adjectives and the other of nouns.
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Example: Community centrality

Community centrality

'1G. 8 A network of coauthorships between 379 scientists whose research centers on the properties of networks of one kind or

nother. Vertex diameters indicate the community centrality and the ten vertices with highest centralities are highlighted. For

hose readers curious about the identities of the vertices, an annotated version of this figure, names and all, can be found at

ttp: //m umich. adu/ mn]n/canf.rullty Inset: a scatter plot of community centrality against vertex degrees. Like most
v . this one is d with dearee. though only moderately strongly.

[m] = =

DA



Multiple communities

Problem: In many real-world examples we don't know the numbers
of the communities.



Multiple communities

Problem: In many real-world examples we don't know the numbers
of the communities.
Approach: Repeated division into two: not ideal.

FIG. 5 Division by the method of optimal modularity of a
simple network consisting of eight vertices in a line. (a) The
optimal division into just two parts separates the network
symmetrically into two groups of four vertices each. (b) The
optimal division into any number of parts divides the network
into three groups as shown here.



Girvan and Newman algorithm
Idea: Remove edges from the networks, with high “betweenness
score”, iteratively.

Motivation: Few edges between communities are bottlenecks.
Traffic has to travel through them.



Girvan and Newman algorithm

Idea: Remove edges from the networks, with high “betweenness
score”, iteratively.

Motivation: Few edges between communities are bottlenecks.
Traffic has to travel through them.

Algorithm
e Edge betweennes: # of geodesic paths between vertex pairs
containing the edge.
e Remove edges with the highest betweennesses until no edges
remains.
e Progress represented in dendogram:




Example: Girvan and Newman algorithm

Fig. 4. Community structure in the social network of bot-
tlenose dolphins assembled by Lusseau et al. [36,37], extracted
using the algorithm of Girvan and Newman [1]. The squares
and circles denote the primary split of the network into two
groups and the circles are further subdivided into four smaller
groups as shown. After Newman and Girvan [38].



Girvan and Newman algorithm 1.

Problem: No guide how many communities to have.



Girvan and Newman algorithm 1.

Problem: No guide how many communities to have.
Solution:

e Introduce again modularity:
Q@ = fraction of edges within communities - expected value of
the same quantity

e If @ =0 community structure is not stronger than by random
chance.

e Local peaks of @ during the algorithm indicates good divisions.

Runtime: Slow O(m?n) or O(n®).



Girvan and Newman algorithm 1.

Problem: No guide how many communities to have.
Solution:

e Introduce again modularity:
Q@ = fraction of edges within communities - expected value of
the same quantity

e If @ =0 community structure is not stronger than by random
chance.

e Local peaks of @ during the algorithm indicates good divisions.
Runtime: Slow O(m?n) or O(n®).
Extensions:

e Monte Carlo estimate of betweennes Tyler at al.

e Local measure of betweennes (short loops) O(m*/n?) Radachi
et al.
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" 0 otherwise.

Then the modularity
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the leading eigenvectors with positive eigenvalues.



Modularity: multiple communities
Shortcomings: two communities, using only leading eigenvector.

Goal: Generalize to ¢ communities.

(5)

S . _ 1 if vertex i belongs to community j,
" 0 otherwise.

Then the modularity

n n

Q=Tr(S™BS) =) > Bi(u/s)?

j=1 k=1
where B=UDU" (D is diagonal with D; ; = ;)

Optimally: Choose mutually orthogonal s, ...,s._1 proportional to
the leading eigenvectors with positive eigenvalues.

Problem: s; € {0,1} and may not be possible to find as many
index vectors making positive contribution. Therefore it gives only
an upper bound on the number of communities.



Modularity: multiple communities |l
Generalization:

e Rewrite the modularity (for possible negative «):
Q=na+ Tr[STUD — al)U'S],
e Then define the p < n dimensional vertex vector r;:

[ril; = /B — aUiy

e Keeping the leading p eigenvalues

R~ na—l—zz [Z[r,]l] = na—|—Z|Rk|2.

k=1 j=1 IieGy

Goal: Maximize the magnitude of vectors Ry =
dividing the vertices into groups.

Connections: It is also called the “Principal component analysis of
networks”.

iEGk l’,‘ by



Modularity: multiple communities |l
Maximizing the magnitude of Ry:
e From the orthogonality of the eigenvectors we have

c n
ZRk = ZI’,’ =0
k=1 i=1

e For ¢ = 2: Ry Ry are equal magnitude and opposite directed.
e Removing vertex i from community k where R/ r;< 0:

’Rk — r,-|2 — |Rk’2 = ’I’,’|2 — 2RZ—I’,' > 0.




Conclusion

Algorithms for bisection graphs with known community size
(Laplacian spectral algorithm, The Kernighan-Lin algorithm)

In lot of real-world example the community sizes are unknown
(Modularity algorithm)

Modularity matrix contains various information
(anti—community structure, network correlation, community
centrality)

Furthermore in real world examples usually there are more
communities (Girvan and Newman algorithm, generalized
modularity algorithm)

Modularity algorithm: connection with figuration model, PCA
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