
Detecting community structure in networks

M.E.J. Newman’s results1,2 (presented by Botond Szabo)

1Detecting community structure in networks (2004)

2Finding community structure in networks using eigenvectors of matrices (2006)

Statistics for Structures Seminar
Amsterdam, 01. 04. 2015.

Outline

• Introduction

• Bisection Algorithms
• Spectral algorithm (Laplacian)
• The Kernighan-Lin algorithm (greedy)
• Modularity algorithm

• Multisection Algorithms
• Girvan and Newman algorithm
• Generalized modularity algorithm

• Conclusion

Model

Model: Grap G = (V ,E), with unweighted vertices V and
undirected, unweighted edges E .

Goal: Find communities:

Examples: Social networks, biochemical networks, information
networks (parallel computing)

Spectral algorithm I.

Definition: Laplacian L = D − A,
where D is the diagonal matrix of vertex degrees and A is the
adjacency matrix.

Properties:
• Since Di ,i =

∑
j Ai ,j the vector v1 = (1, 1, .., 1) is an

eigenvector of L with λ1 = 0 eigenvalue.
• All eigenvalues λi are non-negative.
• The # of zero eigenvalues gives the # of components.
• In symmetric matrices the eigenvectors corresponding to
different eigenvalues are orthogonal.

• In connected graphs the eigenvectors contain both positive and
negative components (except v1).

Spectral algorithm II.

Application: Consider the problem of finding two communities in a
connected graph.

Goal: Minimize the cut size

R =
1
2

∑
i ,j in diffe-
rent groups

Ai ,j =
1
4
sTL s =

n∑
i=1

a2i λi ,

where si = ±1 (group indicator), s =
∑n

i=1 aivi .

Problem: The minimum of R is taken in the trivial case
s = (1, 1, ..., 1).

Spectral algorithm II.

Application: Consider the problem of finding two communities in a
connected graph.

Goal: Minimize the cut size

R =
1
2

∑
i ,j in diffe-
rent groups

Ai ,j =
1
4
sTL s =

n∑
i=1

a2i λi ,

where si = ±1 (group indicator), s =
∑n

i=1 aivi .

Problem: The minimum of R is taken in the trivial case
s = (1, 1, ..., 1).

Spectral algorithm III.

Solution:
• Fix the size of the two groups (n1, n2). Then

a21 = (vT
1 s)

2 = (n1 − n2)2/n.

• Ideally s proportional to v2, but si ∈ {−1, 1}.
• Choose s close to proportional to v2:

si =

{
+1 if v (2)

i ≥ 0,
−1 if v (2)

i < 0.
(1)

• If #{v (2)
i ≥ 0} > n1, then assign the smallest one to the other

group.

Alternative spectral algorithm
Approximate algorithm: No size control on communities, using
ideas from above:

si =

{
+1 if v (2)

i ≥ 0,
−1 if v (2)

i < 0.
(2)

Example: The karate club

Runtime: O(n3), for sparse Laplacian m/(λ3 − λ2).

Alternatively: Minimize the ratio cut R/(n1n2), instead of R .

Alternative spectral algorithm
Approximate algorithm: No size control on communities, using
ideas from above:

si =

{
+1 if v (2)

i ≥ 0,
−1 if v (2)

i < 0.
(2)

Example: The karate club

Runtime: O(n3), for sparse Laplacian m/(λ3 − λ2).
Alternatively: Minimize the ratio cut R/(n1n2), instead of R .

Discussion of Spectral algorithms
Problem: Satisfactory if the network does not divide up easily into
groups but one has to do the best. However, they don’t reflect our
intuitively concept of network communities.

Kernighan-Lin algorithm

Algorithm:
• Assume that we know the community sizes |G1|, |G2|
• Assign benefit function for every division:

Q= # edges within − # edges between the two groups.
• Stage 1: Maximize ∆Q over all pairs i ∈ G1, j ∈ G2.
• Then switch vertices and repeat until from one group all
vertices have been swapped.

• Stage 2: Choose in the preceding sequence the maximum Q.

Runtime: worst case O(n2).

Example: Perfect match in the karate club.

Modularity

Problem:
• We usually don’t know the size of the communities.
• The number of edges between communities is smaller than
expected.

Definition: modularity - Benefit function (different, but related to
before):
Q = # edges within communities - expected # of such edges.

Second term is rather vague. What do we mean under it?

Null model: n vertices, Pi ,j the probability of an edge between i
and j . Then

Q =
1
2m

∑
i ,j

[Ai ,j − Pi ,j]δ(gi , gj),

where gi denotes the community i belongs to.

Modularity

Problem:
• We usually don’t know the size of the communities.
• The number of edges between communities is smaller than
expected.

Definition: modularity - Benefit function (different, but related to
before):
Q = # edges within communities - expected # of such edges.

Second term is rather vague. What do we mean under it?

Null model: n vertices, Pi ,j the probability of an edge between i
and j . Then

Q =
1
2m

∑
i ,j

[Ai ,j − Pi ,j]δ(gi , gj),

where gi denotes the community i belongs to.

Modularity

Problem:
• We usually don’t know the size of the communities.
• The number of edges between communities is smaller than
expected.

Definition: modularity - Benefit function (different, but related to
before):
Q = # edges within communities - expected # of such edges.

Second term is rather vague. What do we mean under it?

Null model: n vertices, Pi ,j the probability of an edge between i
and j . Then

Q =
1
2m

∑
i ,j

[Ai ,j − Pi ,j]δ(gi , gj),

where gi denotes the community i belongs to.

Choice of Pi ,j

Condition 1: ∑
i ,j

Pi ,j =
∑
i ,j

Ai ,j = 2m.

Example: Bernoulli model Pi ,j = p, which has binomial degree
distribution, not right skewed like most of real-world networks.

Condition 2: ∑
j

Pi ,j =
∑

j

Ai ,j =: ki

which for entirely random edges leads to

Pi ,j =
kikj

2m
.

This is closely related to the configuration model (preferal
attachment).

Choice of Pi ,j

Condition 1: ∑
i ,j

Pi ,j =
∑
i ,j

Ai ,j = 2m.

Example: Bernoulli model Pi ,j = p, which has binomial degree
distribution, not right skewed like most of real-world networks.

Condition 2: ∑
j

Pi ,j =
∑

j

Ai ,j =: ki

which for entirely random edges leads to

Pi ,j =
kikj

2m
.

This is closely related to the configuration model (preferal
attachment).

Spectral optimization of modularity

Assumption: we have two communities, but no fixed size.

Definition: Modularity matrix
• Rewrite modularity function

Q =
1
4m

sTBs =
1
4m

∑
i

a2i βi ,

where B=A-P and s =
∑n

i=1 aiui (βi is the eigenvalue
corresponding to the eigenvector ui of B)

• There exists i , such that βi = 0 and vi = (1, 1, ..., 1).
• But there could be (and in practice are) both positive and
negative eigenvalues.

Spectral optimization of modularity II

Solution: similarly to the spectral algorithm

• Best would be to have s proportional to u1 (with largest β1).
• But si = ±1.
• Therefore take

si =

{
+1 if u(1)

i ≥ 0,
−1 if u(1)

i < 0.
(3)

Runtime: O(n2) (by using Lanczos method or its variants).

Example: Modularity

Negative Eigenvalues
Question: what information are stored in the negative eigenvalues?

Answer: “Anti-community structure”, i.e. numbers of edges within
groups are smaller than expected.
Procedure:
• Minimize modularity: take s almost parallel to vn
(corresponding βn).

si =

{
+1 if u(n)

i ≥ 0,
−1 if u(n)

i < 0.
(4)

• Refinement step: move single vertices between groups to
minimize modularity.

Other uses:
• Network correlation: Adjacency vertices have similar properties.
• Community centrality: How central vertices are in their
community.

Negative Eigenvalues
Question: what information are stored in the negative eigenvalues?

Answer: “Anti-community structure”, i.e. numbers of edges within
groups are smaller than expected.
Procedure:
• Minimize modularity: take s almost parallel to vn
(corresponding βn).

si =

{
+1 if u(n)

i ≥ 0,
−1 if u(n)

i < 0.
(4)

• Refinement step: move single vertices between groups to
minimize modularity.

Other uses:
• Network correlation: Adjacency vertices have similar properties.
• Community centrality: How central vertices are in their
community.

Negative Eigenvalues
Question: what information are stored in the negative eigenvalues?

Answer: “Anti-community structure”, i.e. numbers of edges within
groups are smaller than expected.
Procedure:
• Minimize modularity: take s almost parallel to vn
(corresponding βn).

si =

{
+1 if u(n)

i ≥ 0,
−1 if u(n)

i < 0.
(4)

• Refinement step: move single vertices between groups to
minimize modularity.

Other uses:
• Network correlation: Adjacency vertices have similar properties.
• Community centrality: How central vertices are in their
community.

Example: Anti-community structure

Example: Community centrality

Multiple communities

Problem: In many real-world examples we don’t know the numbers
of the communities.

Approach: Repeated division into two: not ideal.

Multiple communities

Problem: In many real-world examples we don’t know the numbers
of the communities.
Approach: Repeated division into two: not ideal.

Girvan and Newman algorithm
Idea: Remove edges from the networks, with high “betweenness
score”, iteratively.

Motivation: Few edges between communities are bottlenecks.
Traffic has to travel through them.

Algorithm
• Edge betweennes: # of geodesic paths between vertex pairs
containing the edge.

• Remove edges with the highest betweennesses until no edges
remains.

• Progress represented in dendogram:

Girvan and Newman algorithm
Idea: Remove edges from the networks, with high “betweenness
score”, iteratively.

Motivation: Few edges between communities are bottlenecks.
Traffic has to travel through them.

Algorithm
• Edge betweennes: # of geodesic paths between vertex pairs
containing the edge.

• Remove edges with the highest betweennesses until no edges
remains.

• Progress represented in dendogram:

Example: Girvan and Newman algorithm

Girvan and Newman algorithm II.

Problem: No guide how many communities to have.

Solution:
• Introduce again modularity:

Q = fraction of edges within communities - expected value of
the same quantity

• If Q = 0 community structure is not stronger than by random
chance.

• Local peaks of Q during the algorithm indicates good divisions.
Runtime: Slow O(m2n) or O(n3).

Extensions:
• Monte Carlo estimate of betweennes Tyler at al.
• Local measure of betweennes (short loops) O(m4/n2) Radachi
et al.

Girvan and Newman algorithm II.

Problem: No guide how many communities to have.
Solution:
• Introduce again modularity:

Q = fraction of edges within communities - expected value of
the same quantity

• If Q = 0 community structure is not stronger than by random
chance.

• Local peaks of Q during the algorithm indicates good divisions.
Runtime: Slow O(m2n) or O(n3).

Extensions:
• Monte Carlo estimate of betweennes Tyler at al.
• Local measure of betweennes (short loops) O(m4/n2) Radachi
et al.

Girvan and Newman algorithm II.

Problem: No guide how many communities to have.
Solution:
• Introduce again modularity:

Q = fraction of edges within communities - expected value of
the same quantity

• If Q = 0 community structure is not stronger than by random
chance.

• Local peaks of Q during the algorithm indicates good divisions.
Runtime: Slow O(m2n) or O(n3).

Extensions:
• Monte Carlo estimate of betweennes Tyler at al.
• Local measure of betweennes (short loops) O(m4/n2) Radachi
et al.

Modularity: multiple communities
Shortcomings: two communities, using only leading eigenvector.

Goal: Generalize to c communities.

Si ,j =

{
1 if vertex i belongs to community j ,
0 otherwise.

(5)

Then the modularity

Q = Tr(STBS) =
n∑

j=1

n∑
k=1

βj(uT
j sk)2,

where B = UDUT (D is diagonal with Di ,i = βi)

Optimally: Choose mutually orthogonal s1, ..., sc−1 proportional to
the leading eigenvectors with positive eigenvalues.

Problem: si ∈ {0, 1} and may not be possible to find as many
index vectors making positive contribution. Therefore it gives only
an upper bound on the number of communities.

Modularity: multiple communities
Shortcomings: two communities, using only leading eigenvector.

Goal: Generalize to c communities.

Si ,j =

{
1 if vertex i belongs to community j ,
0 otherwise.

(5)

Then the modularity

Q = Tr(STBS) =
n∑

j=1

n∑
k=1

βj(uT
j sk)2,

where B = UDUT (D is diagonal with Di ,i = βi)

Optimally: Choose mutually orthogonal s1, ..., sc−1 proportional to
the leading eigenvectors with positive eigenvalues.

Problem: si ∈ {0, 1} and may not be possible to find as many
index vectors making positive contribution. Therefore it gives only
an upper bound on the number of communities.

Modularity: multiple communities
Shortcomings: two communities, using only leading eigenvector.

Goal: Generalize to c communities.

Si ,j =

{
1 if vertex i belongs to community j ,
0 otherwise.

(5)

Then the modularity

Q = Tr(STBS) =
n∑

j=1

n∑
k=1

βj(uT
j sk)2,

where B = UDUT (D is diagonal with Di ,i = βi)

Optimally: Choose mutually orthogonal s1, ..., sc−1 proportional to
the leading eigenvectors with positive eigenvalues.

Problem: si ∈ {0, 1} and may not be possible to find as many
index vectors making positive contribution. Therefore it gives only
an upper bound on the number of communities.

Modularity: multiple communities II
Generalization:
• Rewrite the modularity (for possible negative α):

Q = nα + Tr [STU(D− αI)UTS],

• Then define the p ≤ n dimensional vertex vector ri :

[ri]j =
√
βj − αUi ,j

• Keeping the leading p eigenvalues

Q ≈ nα +
c∑

k=1

p∑
j=1

[∑
i∈Gk

[ri]j
]2

=: nα +
c∑

k=1

|Rk |2.

Goal: Maximize the magnitude of vectors Rk =
∑

i∈Gk
ri by

dividing the vertices into groups.
Connections: It is also called the “Principal component analysis of
networks”.

Modularity: multiple communities II
Maximizing the magnitude of Rk :
• From the orthogonality of the eigenvectors we have

c∑
k=1

Rk =
n∑

i=1

ri = 0

• For c = 2: R1 R2 are equal magnitude and opposite directed.
• Removing vertex i from community k where RT

k ri< 0:

|Rk − ri |2 − |Rk |2 = |ri |2 − 2RT
k ri > 0.

Conclusion

• Algorithms for bisection graphs with known community size
(Laplacian spectral algorithm, The Kernighan-Lin algorithm)

• In lot of real-world example the community sizes are unknown
(Modularity algorithm)

• Modularity matrix contains various information
(anti-community structure, network correlation, community
centrality)

• Furthermore in real world examples usually there are more
communities (Girvan and Newman algorithm, generalized
modularity algorithm)

• Modularity algorithm: connection with figuration model, PCA

	Introduction
	Algorithms
	Fixed size bisection algorithms

