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Partial Monitoring

A general framework for sequential decision making

POMDPs without planning; or

Bandits with complicated feedback structures

Loss not directly observed

Learner Environment

action

feedback



Partial monitoring mathematically
A game is defined by a pair of functions
A loss function: L : A×Z → [0, 1]

A signal function: S : A×Z → Σ

A is the action set, Z is the latent space and Σ is the space of possible signals
Important S and L are known

Interaction protocol

Game is played over n rounds

Adversary secretly chooses distributions (xt)
n
t=1 from ∆(Z)

For rounds t = 1 to n, learner chooses action at ∈ A based on history

Observes feedback/signal σt = S(at, zt) with zt ∼ xt

Suffers loss L(at, zt) but this is not directly observed

Extensions
L(π, x) = E(a,z)∼π⊗x[L(a, z)]
S(a, x) is the law of S(a, z) when z ∼ x ∈ ∆(Z)



Examples

Prediction with expert advice

Bandits

Bandits with graph feedback

Linear bandits

Convex bandits

...

Apple tasing

Dynamic pricing

Spam filtering

Matrix games



Notions of regret

Standard definition of regret compares learner’s cumulative loss to the best single action in
hindsight:

Rn = E

[
n∑

t=1

L(πt, xt)

]
−min

a∈A

n∑
t=1

L(a, xt)

Expectation comes from randomisation of the learner (if any)

Minimax regret is

R⋆
n = inf

policies
sup

adversary
Rn

Question How does the minimax regret depend on the loss and signal functions? And what
algorithms make the regret small

This isn’t the only notion of regret. Sometimes we compare to different baseline (usually
stronger). In partial monitoring we sometimes need a weaker baseline.



Hopeless games

Matching pennies in the dark (Perchet, 2011)

L =

(
0 1
1 0

)
S =

(
⊥ ⊥
⊥ ⊥

)
Learner never observes useful feedback and regret is linear: R⋆

n = Ω(n)

This does not seem like a very fair game



Rustichini’s regret

Rustichini (1999) compared the learner to the best policy (distribution over actions) given
knowledge of the average observable signal distribution

Given x ∈ ∆(Z) and a ∈ A, let S(a, x) be the law of S(a, z) when z ∼ x

Define an equivalence relation R on ∆(Z) by xRy if S(a, x) = S(a, y) for all a ∈ A

Define a function V : ∆(A)×∆(Z) → R by

V(π, x) = max
yRx

L(π, y)

Rustichini’s regret is

Rn = E

[
n∑

t=1

V(πt, xt)

]
− nV⋆

(
1

n

n∑
t=1

xt

)
V⋆(x) = min

π
V(π, x)

Note x 7→ V(π, x) and x 7→ V⋆(x) are concave and V⋆ is piecewise linear



Conventions

Standard setting

V(π, x) = L(π, x) and Z is arbitrary

Rustichini setting

V(π, x) = maxyRx L(π, y) and Z is finite

Regret/minimax regret are

Rn = E

[
n∑

t=1

V(πt, xt)

]
− nV⋆

(
1

n

n∑
t=1

xt

)
R⋆

n = min
policies

sup
adversary

Rn

Important special case if xt = x for all t

Rn = E

[
n∑

t=1

∆(πt, x)

]
∆(π, x) = V(π, x)− V⋆(x)



What do we know ...
... about the dependence on the horizon of the minimax regret?

Many examples fully understood: PwEA, bandits, linear bandits, convex bandits and many
many more

When Z is finite and the regret is the standard definition, then

R⋆
n ∈ {0,Θ(n1/2),Θ(n2/3),Θ(n)}

This is the classification theorem (Bartók et al., 2014)

When Z is finite and the regret is the Rustichini definition, then R⋆
n = O(n2/3) (Kwon and

Perchet, 2017)

What’s new?
A characterisation of the regret in the standard setting for infinite Z
A characterisation of the regret in the Rustichini setting for finite Z

Caveat: Finite action sets only, horizon dependence only



Information ratio
Suppose that x ∈ ∆(Z) is sampled from known distribution µ (‘prior’)
Learner chooses a distribution π ∈ ∆(A)

a ∼ π and z ∼ x and observation is σ = S(a, z)
The information ratio measures the tradeoff between the information gained by the learner
and the regret suffered:

Ψλ(π, µ) =
∆(π, µ)λ

I(π, µ)
∆(π, µ) =

∫
∆(Z)

∆(π, x) dµ(x) ∆(π, x) = V(π, x)− V⋆(x)

I(π, µ) needs to measure how much information is gained by the policy

I(π, µ) = I(x; a, σ) = E

 ∑
x∈spt(µ)

µ(x)KL(S(a, x),S(a, µ))


Alternative

I(π, µ) = E

 ∑
x∈spt(µ)

KL(S(a, µ),S(a, x))





Main theorem

The information ratio charac-
terises the minimax regret up
to subpolynomial factors

Theorem
The minimax λ-information ratio is

Ψλ
⋆ = sup

µ

inf
π

Ψλ(π, µ) = sup
µ

inf
π

∆(π, µ)λ

I(π, µ)

λ 7→ Ψλ
⋆ is decreasing because ∆(π, µ) ∈ [0, 1]

λ⋆ = sup{λ > 1 : Ψλ
⋆ = ∞}

In both the standard setting and Rustichini setting, the minimax re-
gret satisfies

lim sup
n→∞

log(R⋆
n)

log(n)
= 1− 1

λ⋆



Information-directed Sampling

Bayesian algorithm

Bayesian setting

Frequentist results via minimax duality

Learner is given a prior ξ on ∆(Z)n and (xt)
n
t=1 is sampled from ξ

Bayesian regret is

BRn = E(xt)∼ξ[Rn] = E

[
n∑

t=1

V(πt, xt)− nV⋆

(
1

n

n∑
t=1

xt

)]

Information-directed sampling plays πt to minimise

π 7→ Ψλ(π, µt)

where µt has law Et−1[xt|G] and G = ∇V⋆

(
1
n

∑n
t=1 xt

)
∈ G = Im(∇V⋆)



BRn = E

[
n∑

t=1

V(πt, xt)− nV⋆

(
1

n

n∑
t=1

xt

)]

=

n∑
t=1

E [Et−1[V(πt, xt)− VG(xt)|G]]

=

n∑
t=1

E [Et−1[V(πt, xt)|G]− VG(Et−1[xt|G])] (x 7→ VG(x) linear)

≤
n∑

t=1

E [V(πt,Et−1[xt|G])− VG(Et−1[xt|G])] (concavity of x 7→ V(π, x))

≤
n∑

t=1

E [∆(πt, µt)] (definition of ∆, V⋆ ≤ VG)

=
n∑

t=1

E
[
Ψλ(πt, µt)

1/λI(πt, µt)
1/λ
]

(definition of information ratio)

≤ (Ψλ
⋆ )

1/λE

[
n∑

t=1

I(πt, µt)
1/λ

]
(definition of πt and Ψλ

⋆ )

≤ (Ψλ
⋆ )

1/λn1−1/λE

[
n∑

t=1

I(πt, µt)

]1/λ
(Hölder’s inequality)



E

[
n∑

t=1

I(πt, µt)

]
= E

[
n∑

t=1

∑
g∈G

KL(S(at,Et−1[x]),S(at,Et−1[x|G = g])

]
(def. of inf. gain)

= E

[
n∑

t=1

∑
g∈G

log
(

Pt−1(S(at, z) = σt|at)

Pt−1(S(at, z) = σt|G = g, at)

)]
(def. of KL)

= E

[
n∑

t=1

∑
g∈G

log
(

Pt−1(G = g)

Pt−1(G = g|S(at, z) = σt, at)

)]
(Bayes’ law)

= E

[
n∑

t=1

∑
g∈G

log
(
Pt−1(G = g)

Pt(G = g)

)]
(def. of Pt)

=
∑
g∈G

E
[
log
(
P0(G = g)

Pn(G = g)

)]
(telescope)

≤ |G| log(n) . (ugly tricks)

We’re secretly telescoping expected Bregman divergences between (Pt(G = ·))nt=1 with
respect to the logarithmic barrier on |G|-simplex



Putting together the last two slides

BRn ≤ (Ψλ
⋆ )

1/λn1−1/λ(|G| log(n))1/λ

This holds for any prior, so by minimax theory (L and Szepesvári, 2019)

min
policy

max
(xt)

Rn = min
policy

max
prior

BRn = max
prior

min
policy

BRn ≤ (Ψλ
⋆ )

1/λn1−1/λ(|G| log(n))1/λ

For λ > λ⋆ = sup{λ > 1 : Ψλ
⋆ = ∞} we have Ψλ

⋆ < ∞ and hence

lim sup
n→∞

log(Rn)

log(n)
≤ 1− 1

λ

Take limit as λ tends to λ⋆ from above gives

lim sup
n→∞

log(Rn)

log(n)
≤ 1− 1

λ⋆

Not an algorithm. Tools by L and Gyorgy (2021) show that some version of mirror descent with
log barrier regularisation achieves the same bound



Lower bounds

Remember λ⋆ = sup{λ > 1 : Ψ⋆
λ = ∞} and

Ψλ(π, µ) =
∆(π, µ)λ

I(π, µ)
Ψλ

⋆ (µ) = min
π∈∆(A)

Ψλ(π, µ) Ψλ
⋆ = sup

µ

Ψλ
⋆ (µ) ∆⋆(µ) = min

π∈∆(A)
∆(π, µ)

WTS: lim supn→∞
log(R⋆

n)

log(n)
≥ 1− 1

λ⋆
⇐⇒ lim supn→∞

log(R⋆
n)

log(n)
≥ 1− 1

λ
for all λ < λ⋆

1. λ < λ⋆ implies Ψλ
⋆ = ∞ and hence µ can be chosen so that Ψλ

⋆ (µ) is arbitrarily large

2. Next slide we’ll show that R⋆
n = Ω

(
min

(
n∆⋆(µ),

Ψλ
⋆ (µ)

∆⋆(µ)λ−1

))
3. Choosing n = Ψλ

⋆ (µ)/∆⋆(µ)
λ
[
→ ∞ as Ψλ

⋆ (µ) → ∞
]
yields

R⋆
n = Ω

(
n1−1/λΨ⋆(µ)

1/λ
)

4. Taking logs and limits completes the proof



Let µ ∈ ∆(Z)

P is the measure on interaction sequences when the adversary samples zt ∼
∫
x dµ(x)

Px is the measure on interaction sequences when the adversary samples zt ∼ x

Lemma 1 ∆(π, µ) ≥ 2−λΨλ
⋆ (µ)I(π, µ)/∆⋆(µ)

λ−1

Lemma 2 If (πx)x∈spt(µ) ∈ Bϵ(π) for some π, then maxx∈spt(µ) ∆(πx, x) = Ω(∆⋆(µ)).

KL(Pτ ,Pτ
x) = E

[
τ∑

t=1

KL(S(at, µ),S(at, x))

]
≤ E

 τ∑
t=1

∑
y∈spt(µ)

KL(S(at, µ),S(at, y))

 = E

[
τ∑

t=1

I(πt, µ)

]

Case 1: E[
∑n

t=1 I(πt, µ)] = O(ϵ). Then KL(Pn,Pn
x) = O(ϵ) for all x ∈ spt(µ). Then learner behaves

similarly for all x ∈ spt(µ). Regret is Ω(n∆⋆(µ)) by Lemma 2.

Case 2: E[
∑τ

t=1 I(πt, µ)] = Θ(ϵ). By Lemma 2, E[
∑τ

t=1 ∆(πt, µ)] = Ω(Ψλ
⋆ (µ)/∆⋆(µ)

λ−1). Hence
there exists some x ∈ spt(µ) such that Ex[

∑τ
t=1 ∆(πt, x)] = Ω(Ψλ

⋆ (µ)/∆⋆(µ)
λ−1).

Hence: Rn = Ω(min(n∆⋆(µ),Ψ
λ
⋆ (µ)/∆⋆(µ)

λ−1))



Summary

The minimax information ratio determines the minimax regret up to subpolynomial factors
for all finite action games

Result holds for both the standard and Rustichini settings

More or less practical algorithm for small games

Stochastic games are not easier than adversarial games (in terms of horizon)

Example finite Rustichini games with weird minimax regret: R⋆
n = Θ(n4/7)

Example infinite standard games with weird minimax regret: R⋆
n = Θ(np) for any p ∈ [1/2, 1]

Paper: https://arxiv.org/abs/2202.10997

https://arxiv.org/abs/2202.10997


Open questions

Does the result hold for the standard information ratio (no?)

What to do when you have many actions? (bounds scale with |A|)
Classification of all finite Rustichini games

lim
n→∞

log(R⋆
n)

log(n)
∈ {0, 1/2} ∪

{
2i

2i+1 − 1
: i ∈ N

}
Any handle on constants?

High probability bounds

Any kind of ‘general’ infinite-outcome games where we can expect efficient algorithms

What are the best applications of partial monitoring (and Rustichini’s regret)
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