
Kernel-based regression
Statistical Analysis of Network Data by Eric D. Kolaczyk

Presentation by Jarno Hartog

May 8, 2015



Goal: predict unobserved vertex attributes

Simple solution: nearest neighbor

4 black, 5 red, 1 unknown

3 black, 1 red, 1 unknown

2 black
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Goal: predict unobserved vertex attributes

Another solution: regression

1. Generalized notion of
predictor variables

2. Regression of response to
these predictors
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Notation

Graph G = (V ,E )

Vertex attributes
X = (X1, . . . ,XNv )

Observed labels V obs ⊂ V ,
|V obs| = n

Goal: learn ĥ : V → R
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Which class to choose estimated function from?

Definition (Kernel)

Function K : V × V → R is a kernel if for all m = 1, . . . ,Nv ,
subsets {i1, . . . , im} ⊂ V , the m ×m matrix K (m) = (K (ij , ij ′)) is
symmetric positive semi-definite
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Which class to choose estimated function from?

Estimate function ĥ using kernel K = Φ∆ΦT

Definition (Reproducing kernel Hilbert space)

HK = {h ∈ RNv : h = Φβ, βT∆−1β <∞}
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Representer theorem

Choose ĥ = Φβ̂

min
β

 ∑
i∈V obs

C (xi ; (Φβ)i ) + λβT∆−1β


Theorem (Representer theorem, Kimeldorf and Whaba, 1971)

Solution ĥ will be of the form h = K (Nv ,n)α

min
α

 ∑
i∈V obs

C
(
xi ;
(
K (n)α

)
i

)
+ λαTK (n)α


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Examples

Kernel ridge regression

C (x ; a) = (x − a)2

α̂ =
Φ∆−1/2(∆ +λI )−1∆1/2ΦT x

ĥ = K (Nv ,n)α̂

Kernel logistic regression

C (x ; a) = log(1 + e−xa)

No closed-form expression
for solution

ĥ = K (Nv ,n)α̂

P̂(Xi = 1|X obs = xobs) =
e ĥi

1+e ĥi
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Another example

Support Vector Machines (SVM)

Machine Learning

C (x ; a) = max(0, 1− xa)

Prediction of the form sign(ĥi )
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How to choose tuning parameter?

min
α

 ∑
i∈V obs

C
(
xi ;
(
K (n)α

)
i

)
+ λαTK (n)α


Loss versus complexity penalty

Cross-validation

Expectation propagation (empirical Bayes)

Learn from data (full Bayes)
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How to choose kernel?
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Laplacian kernel

L = D − A

K = L−

Proximity is encoded in adjacency matrix A

Discrete analog of Laplacian operator ∇2

∇2 is the unique self-adjoint second order differential operator
invariant under transformations of the coordinate system
under action of SOm (rotations)

Similar result for L under Sn (permutations) (Smola and
Kondor, 2003)

Penalty term βT∆−1β = hTLh =
∑

(i ,j)∈E (hi − hj)
2
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Related kernels

L incorporates knowledge of 1-step neighbors

Lk incorporates knowledge of k-step neighbors

L = ΦΓΦT ⇒ Lk = ΦΓkΦT

Diffusion kernel K = e−ζL is solution to d
dζK = −LK

General class of kernels r(L) = Φr(Γ)ΦT
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Multiple kernels

K1, . . . ,Kp potential kernels

Definition (Kernel alignment)

a(K1,K2) =
〈K1,K2〉√

〈K1,K1〉〈K2,K2〉

High target alignment a(K , xxT ) suggests a good kernel
(Cristianini et al., 2006)

K =
∑p

i=1 ωiKi
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Karate club
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Eigenvalues
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Eigenvectors
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Estimate
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