Kernel-based regression
 Statistical Analysis of Network Data by Eric D. Kolaczyk

Presentation by Jarno Hartog

May 8, 2015

Goal: predict unobserved vertex attributes

Simple solution: nearest neighbor

■ 4 black, 5 red, 1 unknown
■ 3 black, 1 red, 1 unknown
■ 2 black

Goal: predict unobserved vertex attributes

Another solution: regression

1. Generalized notion of predictor variables
2. Regression of response to these predictors

Notation

- Graph $G=(V, E)$
- Vertex attributes
$X=\left(X_{1}, \ldots, X_{N_{v}}\right)$
- Observed labels $V^{\text {obs }} \subset V$, $\left|V^{\text {obs }}\right|=n$
- Goal: learn $\hat{h}: V \rightarrow \mathbb{R}$

Which class to choose estimated function from?

Definition (Kernel)
Function $K: V \times V \rightarrow \mathbb{R}$ is a kernel if for all $m=1, \ldots, N_{v}$, subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subset V$, the $m \times m$ matrix $K^{(m)}=\left(K\left(i_{j}, i_{j^{\prime}}\right)\right)$ is symmetric positive semi-definite

Which class to choose estimated function from?

Estimate function \hat{h} using kernel $K=\Phi \Delta \Phi^{T}$
Definition (Reproducing kernel Hilbert space)

$$
\mathscr{H}_{K}=\left\{h \in \mathbb{R}^{N_{v}}: h=\Phi \beta, \beta^{T} \Delta^{-1} \beta<\infty\right\}
$$

Representer theorem

Choose $\hat{h}=\Phi \hat{\beta}$

$$
\min _{\beta}\left[\sum_{i \in V^{\text {obs }}} C\left(x_{i} ;(\Phi \beta)_{i}\right)+\lambda \beta^{T} \Delta^{-1} \beta\right]
$$

Theorem (Representer theorem, Kimeldorf and Whaba, 1971)
Solution \hat{h} will be of the form $h=K^{\left(N_{v}, n\right)} \alpha$

$$
\min _{\alpha}\left[\sum_{i \in V^{\mathrm{obs}}} C\left(x_{i} ;\left(K^{(n)} \alpha\right)_{i}\right)+\lambda \alpha^{T} K^{(n)} \alpha\right]
$$

Examples

Kernel ridge regression

- $C(x ; a)=(x-a)^{2}$
- $\hat{\alpha}=$
$\Phi \Delta^{-1 / 2}(\Delta+\lambda I)^{-1} \Delta^{1 / 2} \Phi^{T} x$
- $\hat{h}=K^{\left(N_{v}, n\right)} \hat{\alpha}$

Kernel logistic regression

- $C(x ; a)=\log \left(1+e^{-x a}\right)$

■ No closed-form expression for solution

- $\hat{h}=K^{\left(N_{v}, n\right)} \hat{\alpha}$
- $\hat{\mathbb{P}}\left(X_{i}=1 \mid X^{\mathrm{obs}}=x^{\mathrm{obs}}\right)=$ $\frac{e^{\hat{h}_{i}}}{1+e^{h_{i}}}$

Another example

Support Vector Machines (SVM)
■ Machine Learning
■ $C(x ; a)=\max (0,1-x a)$

- Prediction of the form $\operatorname{sign}\left(\hat{h}_{i}\right)$

How to choose tuning parameter?

$$
\min _{\alpha}\left[\sum_{i \in V^{\text {obs }}} C\left(x_{i} ;\left(K^{(n)} \alpha\right)_{i}\right)+\lambda \alpha^{T} K^{(n)} \alpha\right]
$$

Loss versus complexity penalty

- Cross-validation
- Expectation propagation (empirical Bayes)
- Learn from data (full Bayes)

How to choose kernel?

Laplacian kernel

$L=D-A$

- $K=L^{-}$
- Proximity is encoded in adjacency matrix A
- Discrete analog of Laplacian operator ∇^{2}
- ∇^{2} is the unique self-adjoint second order differential operator invariant under transformations of the coordinate system under action of SO_{m} (rotations)
- Similar result for L under S_{n} (permutations) (Smola and Kondor, 2003)
■ Penalty term $\beta^{T} \Delta^{-1} \beta=h^{T} L h=\sum_{(i, j) \in E}\left(h_{i}-h_{j}\right)^{2}$

Related kernels

■ L incorporates knowledge of 1-step neighbors

- L^{k} incorporates knowledge of k-step neighbors
- $L=\Phi \Gamma \Phi^{T} \Rightarrow L^{k}=\Phi \Gamma^{k} \Phi^{T}$
- Diffusion kernel $K=e^{-\zeta L}$ is solution to $\frac{d}{d \zeta} K=-L K$
- General class of kernels $r(L)=\operatorname{\Phi r}(\Gamma) \Phi^{T}$

Multiple kernels

K_{1}, \ldots, K_{p} potential kernels
Definition (Kernel alignment)

$$
a\left(K_{1}, K_{2}\right)=\frac{\left\langle K_{1}, K_{2}\right\rangle}{\sqrt{\left\langle K_{1}, K_{1}\right\rangle\left\langle K_{2}, K_{2}\right\rangle}}
$$

- High target alignment $a\left(K, x x^{T}\right)$ suggests a good kernel (Cristianini et al., 2006)
- $K=\sum_{i=1}^{p} \omega_{i} K_{i}$

Karate club

Eigenvalues

Eigenvectors

Estimate

