Kernel-based regression Statistical Analysis of Network Data by Eric D. Kolaczyk

Presentation by Jarno Hartog

May 8, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Goal: predict unobserved vertex attributes

Simple solution: nearest neighbor

- 4 black, 5 red, 1 unknown
- 3 black, 1 red, 1 unknown

Kernel-based regression 2

2 black

Goal: predict unobserved vertex attributes

Another solution: regression

1. Generalized notion of predictor variables

2. Regression of response to these predictors

Notation

- Graph G = (V, E)
- Vertex attributes $X = (X_1, \dots, X_{N_v})$
- Observed labels V^{obs} ⊂ V,
 |V^{obs}| = n

イロト イヨト イヨト イヨト

Goal: learn $\hat{h}: V \to \mathbb{R}$

Which class to choose estimated function from?

Definition (Kernel)

Function $K: V \times V \to \mathbb{R}$ is a kernel if for all $m = 1, ..., N_v$, subsets $\{i_1, ..., i_m\} \subset V$, the $m \times m$ matrix $K^{(m)} = (K(i_j, i_{j'}))$ is symmetric positive semi-definite

Which class to choose estimated function from?

Estimate function \hat{h} using kernel $K = \Phi \Delta \Phi^T$ Definition (Reproducing kernel Hilbert space)

$$\mathscr{H}_{\mathcal{K}} = \{ h \in \mathbb{R}^{N_{\mathcal{V}}} : h = \Phi\beta, \beta^{\mathsf{T}} \Delta^{-1} \beta < \infty \}$$

イロン イヨン イヨン イヨン

Representer theorem

Choose
$$\hat{h} = \Phi \hat{\beta}$$

$$\min_{\beta} \left[\sum_{i \in V^{\text{obs}}} C(x_i; (\Phi\beta)_i) + \lambda \beta^T \Delta^{-1} \beta \right]$$

Theorem (Representer theorem, Kimeldorf and Whaba, 1971) Solution \hat{h} will be of the form $h = K^{(N_v,n)}\alpha$

$$\min_{\alpha} \left[\sum_{i \in V^{\text{obs}}} C\left(x_i; \left(K^{(n)} \alpha \right)_i \right) + \lambda \alpha^T K^{(n)} \alpha \right]$$

Kernel-based regression |7

(日) (部) (注) (注) (注)

Examples

Kernel ridge regression

•
$$C(x; a) = (x - a)^2$$

• $\hat{\alpha} = \Phi \Delta^{-1/2} (\Delta + \lambda I)^{-1} \Delta^{1/2} \Phi^T x$
• $\hat{h} = K^{(N_v, n)} \hat{\alpha}$

Kernel logistic regression

•
$$C(x; a) = \log(1 + e^{-xa})$$

 No closed-form expression for solution

$$\hat{h} = K^{(N_v,n)}\hat{\alpha}$$

•
$$\hat{\mathbb{P}}(X_i = 1 | X^{\text{obs}} = x^{\text{obs}}) = \frac{e^{\hat{h}_i}}{1 + e^{\hat{h}_i}}$$

・ロン ・回と ・ヨン・

≣ ► ৰ ≣ ► ≣ ∽ ९ < |Kernel-based regression |8

Another example

Support Vector Machines (SVM)

Machine Learning

•
$$C(x; a) = \max(0, 1 - xa)$$

Prediction of the form $sign(\hat{h}_i)$

3

イロン イヨン イヨン イヨン

How to choose tuning parameter?

$$\min_{\alpha} \left[\sum_{i \in V^{\text{obs}}} C\left(x_i; \left(K^{(n)} \alpha \right)_i \right) + \lambda \alpha^T K^{(n)} \alpha \right]$$

・ロト ・回ト ・ヨト ・ヨト

Kernel-based regression 10

Loss versus complexity penalty

- Cross-validation
- Expectation propagation (empirical Bayes)
- Learn from data (full Bayes)

How to choose kernel?

Kernel-based regression |11

Э

・ロン ・回 と ・ ヨン ・ ヨン

Laplacian kernel

- L = D A
 - $K = L^-$
 - Proximity is encoded in adjacency matrix A
 - Discrete analog of Laplacian operator ∇^2
 - ∇² is the unique self-adjoint second order differential operator invariant under transformations of the coordinate system under action of SO_m (rotations)
 - Similar result for L under S_n (permutations) (Smola and Kondor, 2003)

• Penalty term
$$\beta^T \Delta^{-1} \beta = h^T L h = \sum_{(i,j) \in E} (h_i - h_j)^2$$

(日)(4月)(4日)(4日)(日)

Related kernels

- L incorporates knowledge of 1-step neighbors
- L^k incorporates knowledge of k-step neighbors

$$L = \Phi \Gamma \Phi^T \Rightarrow L^k = \Phi \Gamma^k \Phi^T$$

- Diffusion kernel $K = e^{-\zeta L}$ is solution to $\frac{d}{d\zeta}K = -LK$
- General class of kernels $r(L) = \Phi r(\Gamma) \Phi^T$

Multiple kernels

 K_1, \ldots, K_p potential kernels Definition (Kernel alignment)

$$\mathsf{a}(\mathsf{K}_1,\mathsf{K}_2) = rac{\langle \mathsf{K}_1,\mathsf{K}_2
angle}{\sqrt{\langle \mathsf{K}_1,\mathsf{K}_1
angle\langle \mathsf{K}_2,\mathsf{K}_2
angle}}$$

 High target alignment a(K, xx^T) suggests a good kernel (Cristianini et al., 2006)

イロト イポト イヨト イヨト 二日

Kernel-based regression |14

• $K = \sum_{i=1}^{p} \omega_i K_i$

Karate club

|Kernel-based regression |15

(日)、(日)、(日)、(日)、(日)、(日)

Eigenvalues

æ Kernel-based regression |16

 $\Xi \rightarrow$

ж

Eigenvectors

Kernel-based regression |17

æ

Estimate

|Kernel-based regression |18

~ ? ?

▲□ → ▲圖 → ▲ 国 → ▲ 国 → ▲ 国