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I Goal: network reconstruction from data and use of
prior/external knowledge.

I Network = graph. A graph consists of a pair (I, E) where
I = {1, 2, ..., p} is a set of indices representing nodes and E is
the set of edges (relations between the nodes) in I × I.

I Here edges reflect conditional dependencies between the
nodes =⇒ Conditional Independence Graph.
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I Data: Y j ∼iid N(0,Ω−1p ), j ∈ {1, ..., n} where
Ω−1p is the covariance matrix and Ωp = (wkl)k,l=1,...,p is the
inverse covariance (or precision) matrix.

I In this setting (Gaussian Graphical Model), it holds
corr(Yi1 ,Yi2 |Y−i1,−i2) = wi1i2 (conditional dependency).

I Recontructing the network (conditional independence graph)
is equivalent to determine the support of Ωp.
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I For n� p, typically for gene expression data, the problem of
estimating Ωp is not feasible.

I Some proposed solution:
Graphical lasso : maximize the penalized log-likelihood

log(detΩp)− tr(SΩp)− ρ||Ωp||1

over the space of positive definite matrices M+ with shrinkage
parameter ρ > 0.
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SEMs

I Simultaneous Equations Models (SEMs): modeling of the
full conditional distribution of each node and result in a
system of p regression equations.

I It is:

Yi =

p∑
s=1,s 6=i

βisYs + εi , i ∈ I. (1)

I Equivalence between regression parameters and precision
matrix elements, namely βis = w−1ii wis .

I Estimation of support of Ωp ⇐⇒ variables selection in p
regressions.
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Bayesian SEM

I Meinshausen & Buehlmann put a lasso penalty on each
regression parameter to select the neighbors of each variable.

I Previously we proposed a Bayesian formulation of the SEM
(BSEM) and put priors on parameters in (1). It is:

εi ∼ N(0n, σ
2
i In),

βis ∼ N(0, σ2i τ
−2
i ),

τ2i ∼ Γ(a, b),

σ−2i ∼ Γ(c , d)

(2)

c,d: non-informative.
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Variational Bayes

I Variational approximation to a distribution = closest element
in a target set Q chosen both for computational tractability
and accuracy.

I distance measured by Kullback- Leibler divergence.

I Distributions Q with stochastically independent marginals (i.e.
product laws) are popular.

I Accuracy of approximation naturally restricted to the marginal
distributions.
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Why is Bayesian SEM attractive?

I Double shrinkage; Amount of shrinkage is node-specific.

I Fast posterior approximation by Variational Bayes.

I Approximate joint posterior under product laws assumption:

π(βi , τ
2
i , σ

−2
i ) ≈ q(βi , τ

2
i , σ

−2
i ) = q1(βi )q2(τ2i )q3(σ−2i )

I Appealing EB procedure for hyperparameters estimation.

I Efficient EM-type algorithms for minimization.
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Why is Variational Bayes attractive?

I It is FAST (remember: p penalized regressions...).

I It is ACCURATE (verified by Gibbs sampling).

I Analytical lower-bound for marginal likelihood: Mi (a, b)
I Summation: M(a, b) =

∑p
i=1 Mi (a, b)

I Maximize M(a, b): EB estimate of prior parameters.

I Mi (a, b) facilitates posterior edge selection
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Extension of BSEM to BSEMed

I Prior knowledge on the to-be-reconstructed network topology
usually available for instance

I from pathway repositories like KEGG
I inferred from data of pilot study.

I Natural to take such information into account during network
reconstruction.

I Prior knowledge assumed to be available as a prior network,
which specifies which edges are present and absent.

G.B. Kpogbezan Network recovery using prior knowledge



BSEMed

Incorporation of prior network P in form of adjacency matrix
containing only zeros (no edge) and ones (edge is present):

Yi =
p∑

s=1,s 6=i

βisYs + εi , i ∈ I,

εi ∼ N(0n, σ
2
i In),

βis ∼ N(0, σ2i τ
−2
i ,Pis

)

τ2i ,Pis
∼ Γ(aPis

, bPis
),

σ−2i ∼ Γ(c , d)

(3)

c,d: non-informative.
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VB vs Gibbs sampling

I How close is the variational approximation to the true
posterior distribution?

I Here we investigate this question by comparing the variational
Bayes estimates of the marginal densities with the
corresponding Gibbs sampling-based estimates.

I n = 50 independent replicates from a N(0,Ω−1p ) with p = 50.

I Ωp was chosen to be a band matrix with bl = bu = 4 =⇒ a
total number of 9 band elements including the diagonal.

I Simulation study with a single regression equation (say i = 1).
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Figure: Comparison of variational marginal densities of β1,2, . . . , β1,10
(blue curves) and τ 21,0, τ 21,1 and σ−2

1 (black curves) with corresponding
Gibbs sampling-based histograms. The red vertical lines display the
variational marginal means.
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VB vs Gibbs sampling: Time comparison

BSEMed Gibbs sampling

time in seconds 40 2542× 50 = 127, 100

Computing times for an R-implementation of the variational Bayes
method and the Gibbs sampling method with n = p = 50.
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(a) True graph

 

 

(b) BSEMed: true

 

 

(c) BSEMed: 50 %

 

 

(d) BSEM

Figure: Visualization of BSEMed estimate using perfect prior (b),
BSEMed estimate using 50% true edges information (c), BSEM estimate
(d) and the true graph (a) in case n = 50 and p = 100.
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Data: Gene expression data from GEO

Lung: 49 Normals, 58 Cancers
Apoptosis pathway: p = 84 genes

Pancreas: 39 Normals, 39 Cancers
p53 pathway: p = 68 genes.

Idea: Use network fitted on Normals to inform network for
Cancers.
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EB estimate of prior mean τ2i ,0 and τ2i ,1

Not in Normal Network In Normal Nerwork ratio

Lung 27.32 1.71 20.13

Pancreas 20.03 1.21 12.97

I Prior networks are clearly of use:
I the mean prior precision for regression parameters

corresponding to the edges absent in the prior network is
relatively large

I stronger shrinkage towards zero compared to mean prior
precision corresponding to edges present in the prior network.
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Reproducibility

100 random splits of the data: What proportion of top 50 edges
reproduces, on average?

# edges BSEM SEMLasso glasso BSEMed

50 9.12% 2.64% 6.84% 59.16%

Lung data, average percentage edges in overlap.

# edges BSEM SEMLasso glasso BSEMed

50 14.84% 5.6% 9.04% 55.64%

Pancreas data, average percentage edges in overlap.
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I BSEMed and BSEM are attractive framework for network
inference and computationally very fast.

I Performance of BSEMed increase when the external data is
relevant.

I BSEMed performs as good as BSEM when external data are
not relevant at all.

I In case of multiple sources of external data BSEMed can be
easily used: one at a time.
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THANK YOU!!!

G.B. Kpogbezan Network recovery using prior knowledge


	Background
	Model
	VB vs Gibbs sampling
	Simulation and Illustration
	Conclusions

