Library
Linear systems
Kalman.LinearObservation — Type.LinearObservation(P, H, R)Observe the LinearEvolution P using y = Hx + v where $v \sim N(0, R)$.
Examples
O = LinearObservation(LinearEvolution(Φ, Gaussian(b, Q)), H, R)Kalman.LinearEvolution — Type.LinearEvolution(Φ, b, Q) <: EvolutionEvolution of the law of x -> Φ x + w where $w \sim N(0, Q)$.
Examples
evolve(LinearEvolution(Φ, b, Q), 0 => Gaussian(x, P))Kalman.LinearStateSpaceModel — Type.LinearStateSpaceModel <: StateSpaceModel
LinearStateSpaceModel(sys, obs)Combines a linear system sys and an observations model obs and to a linear statespace model in a modular way.
Evolves StateObs objects.
Filtering
Kalman.kalmanfilter — Function.kalmanfilter(M, t => x0) -> kfkf(iter) is an iterator over Gaussians or Distributions representing the filtered distribution of x where y iterates over (enumerated) signal values.
Example
kf = kalmanfilter(M, 0 => prior) #
est1 = collect(kf(Y1))
est2 = collect(kf(Y2))Kalman.Filtered — Type.filter(Y, P)"Filter" data Y with iterator P calling (handling of nothings omitted)
(t, y), state = iterate(Y, state)
(s => x) = dyniterate(P, s => x, (observation = t => y,))Smoothing
Iterators
DynamicIterators.dyniterate